- Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52(3), 317-332. [Google Scholar]
- Akbas, D. & Kahraman. N. (2019). A primer on applied Latent Class Analysis for modeling qualitative differences: An application on Resilience data. Mediterranean Journal of Educational Research, 13(29), 356-382. https://doi.org/10.29329/mjer.2019.210.19 [Google Scholar] [Crossref]
- Baltes, P. B., & Nesselroade, J. R. (1979). History and rationale of longitudinal research. In J. R. Nesselroade, & P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development (pp. 1–39). Academic. [Google Scholar]
- Beck, C., McSweeney, J. C., Richards, K. C., Roberson, P. K., Tsai, P. F., & Souder, E. (2010). Challenges in tailored intervention research. Nursing Outlook, 58(2), 104-110. https://doi.org/10.1016/j.outlook.2009.10.004 [Google Scholar] [Crossref]
- Collins, L. M. (1991). The measurement of dynamic latent variables in longitudinal aging research: Quantifying adult development. Experimental Aging Research, 17(1), 13-20. https://doi.org/10.1080/03610739108253882 [Google Scholar] [Crossref]
- Collins, L. M. (2006). Analysis of longitudinal data: The integration of theoretical model, temporal design, and statistical model. Annual Review of Psycology, 57, 505-528. https://doi.org/10.1146/annurev.psych.57.102904.190146 [Google Scholar] [Crossref]
- Collins, L. M., & Flaherty, B. P. (2002). Latent class models for longitudinal data. In J. A. Hagenaars, & A. L. McCutcheon (Eds.), Applied latent class analysis içinde (pp. 287-303). Cambridge University. [Google Scholar]
- Collins, L., & Lanza, S. T. (2010). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences. John Wiley & Sons. [Google Scholar]
- Collins, L., Lanza, S. T., Schafer, J. L., & Flaherty, B. P. (2002). WinLTA user’s guide (Version 3.0). The Methodology Center. [Google Scholar]
- Collins, L. M., & Wugalter, S. E. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate Behavioral Research, 27(1), 131-157. https://doi.org/10.1207/s15327906mbr2701_8 [Google Scholar] [Crossref]
- Cosco, T. D., Kaushal, A., Hardy, R., Richards, M., Kuh, D., & Stafford, M. (2017). Operationalising resilience in longitudinal studies: A systematic review of methodological approaches. Journal of Epidemiol Community Health, 71(1), 98-104. https://doi.org/10.1136/jech-2015-206980 [Google Scholar] [Crossref]
- IJntema, R. C., Burger, Y. D., & Schaufeli, W. B. (2019). Reviewing the labyrinth of psychological resilience: Establishing criteria for resilience-building programs. Consulting Psychology Journal: Practice and Research, 71(4), 288-304. https://doi.org/10.1037/cpb0000147 [Google Scholar] [Crossref]
- Langeheine, R. (1988). New developments in latent class theory. R. Langeheine & J. Rost (Ed.), Latent trait and latent class models içinde (s. 77-108). Plenum. [Google Scholar]
- Lanza, S. T., Flaherty, B. P., & Collins, L. M. (2003). Latent class and latent transition analysis. In J. A. Schinka, W. F. Velicer, & I. B. Weiner (Eds.), Handbook of psychology: Research methods in psychology (pp. 663-685). John Wiley & Sons. [Google Scholar]
- Laursen, B., & Hoff, E. (2006). Person-centered and variable-centered approaches to longitudinal data. Merrill-Palmer Quarterly, 52(3), 377-389. [Google Scholar]
- Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Houghton Mifflin. [Google Scholar]
- Li, F., Cohen, A., Bottge, B., & Templin, J. (2016). A latent transition analysis model for assessing change in cognitive skills. Educational and Psychological Measurement, 76(2), 181-204. https://doi.org/10.1177/0013164415588946 [Google Scholar] [Crossref]
- Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88(3), 767-778. https://doi.org/10.1093/biomet/88. 3.767 [Google Scholar] [Crossref]
- Magidson, J., & Vermunt, J. K. (2004). Latent class models. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 175-198). Sage. [Google Scholar]
- Masten, A. S. (2015). Ordinary magic: Resilience in development. The Guilford. [Google Scholar]
- Masten, A. S., Burt, K. B., Roisman, G. I., Obradović, J., Long, J. D., & Tellegen, A. (2004). Resources and resilience in the transition to adulthood: Continuity and change. Development and Psychopathology, 16(4), 1071-1094. https://doi.org/10.1017/S0954579404040143 [Google Scholar] [Crossref]
- Masten, A. S., Hubbard, J. J., Gest, S. D., Tellegen, A., Garmezy, N., & Ramirez, M. (1999). Competence in the context of adversity: Pathways to resilience and maladaptation from childhood to late adolescence. Development and Psychopathology, 11(1), 143-169. https://doi.org/10.1017/S0954579499001996 [Google Scholar] [Crossref]
- Masten, A., & Tellegen, A. (2012). Resilience in developmental psychopathology: Contributions of the Project Competence Longitudinal Study. Development and Psychopathology, 24(2), 345-361. https://doi.org/10.1017/S095457941200003X [Google Scholar] [Crossref]
- Masyn, K. E. (2013). Latent class analysis and finite mixture modeling. In T. D. Little (Ed.), The Oxford handbook of quantitative methods (pp. 551-611). Oxford University. [Google Scholar]
- Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12(1), 23–44. https://doi.org/10.1037/1082-989X.12.1.23 [Google Scholar] [Crossref]
- McLachlan, G., & Peel, D. (2000). Finite mixture models. John Wiley & Sons. [Google Scholar]
- Menard, S. (2008). Introduction: Longitudinal research design and analysis. In S. Menard (Ed.), Handbook of longitudinal research: design, measurement, and analysis içinde (pp. 3-12). Elsevier. [Google Scholar]
- Molenaar, P. C. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology - This time forever. Measurement, 2(4), 201-218. https://doi.org/10.1207/s15366359mea0204_1 [Google Scholar] [Crossref]
- Muthén, B. (2007). Latent variable hybrids: Overview of old and new methods. In G. R. Hancock, & K. M. Samuelsen (Eds.), Advances in latent variable mixture modeling (pp. 1-24). Information Age. [Google Scholar]
- Muthén, L., & Muthén, B. (1998-2012). Mplus user’s guide (Seventh edition). Muthén & Muthén. [Google Scholar]
- Muthén, B., & Muthén, L. K. (2000). Integrating person‐centered and variable‐centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24(6), 882-891. https://doi.org/10.1111/j.1530-0277.2000.tb02070.x [Google Scholar] [Crossref]
- Nylund, K. L. (2007). Latent transition analysis: Modeling extensions and an application to peer victimization. [Doctoral Dissertation, University of California]. [Google Scholar]
- Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14(4), 535-569. https://doi.org/10.1080/10705510701575396 [Google Scholar] [Crossref]
- Nylund-Gibson, K., & Choi, A. Y. (2018). Ten frequently asked questions about latent class analysis. Translational Issues in Psychological Science, 4(4), 440-461. https://doi.org/10.1037/tps0000176 [Google Scholar] [Crossref]
- Nylund-Gibson, K., Grimm, R., Quirk, M., & Furlong, M. (2014). A latent transition mixture model using the three-step specification. Structural Equation Modeling: A Multidisciplinary Journal, 21(3), 439-454. https://doi.org/10.1080/10705511.2014.915375 [Google Scholar] [Crossref]
- Ployhart, R. E., & Vandenberg, R. J. (2010). Longitudinal research: The theory, design, and analysis of change. Journal of Management, 36(1), 94-120. https://doi.org/10.11 77/0149206309352110 [Google Scholar] [Crossref]
- Raufelder, D., Jagenow, D., Hoferichter, F., & Drury, K. M. (2013). The person-oriented approach in the field of educational psychology. Problems of Psychology in the 21st Century, 5, 79-88. [Google Scholar]
- Ruscio, J., & Ruscio, A. M. (2008). Categories and dimensions: Advancing psychological science through the study of latent structure. Current Directions in Psychological Science, 17(3), 203-207. https://doi.org/10.1111/j.1467-8721.2008.00575.x [Google Scholar] [Crossref]
- Ryoo, J. H., Wang, C., Swearer, S. M., Hull, M., & Shi, D. (2018). Longitudinal model buiding using latent transition analysis: An example using school bullying data. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.00675 [Google Scholar] [Crossref]
- Schoenberg, R. (2008). Dynamic models and cross-sectional data: The consequences of dynamic misspecification. In S. Menard (Ed.), Handbook of longitudinal research: Design, measurement, and analysis (pp. 249-258). Elsevier. [Google Scholar]
- Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. http://www.jstor.org/stable/2958889 [Google Scholar]
- Shaffer, D. R., & Kipp, K. (2013). Developmental psychology: Childhood and adolescence. Cengage Learning. [Google Scholar]
- Sorgente, A., Lanz, M., Serido, J., Tagliabue, S., & Shim, S. (2019). Latent transition analysis: Guidelines and an application to emerging adults' social development. TPM: Testing, Psychometrics, Methodology in Applied Psychology, 26(1), 39-72. https://doi.org/10.4473/TPM26.1.3 [Google Scholar] [Crossref]
- Timmons, A. C., & Preacher, K. J. (2015). The importance of temporal design: How do measurement intervals affect the accuracy and efficiency of parameter estimates in longitudinal research? Multivariate Behavioral Research, 50(1), 41-55. https://doi.org/10.1080/00273171.2014.961056 [Google Scholar] [Crossref]
- Tusaie, K., & Dyer, J. (2004). Resilience: A historical review of the construct. Holistic Nursing Practice, 18(1), 3-10. [Google Scholar]
- Vella, S. L. C., & Pai, N. B. (2019). A theoretical review of psychological resilience: Defining resilience and resilience research over the decades. Archives of Medicine and Health Sciences, 7(2), 233-239. https://doi.org/10.4103/amhs.amhs_119_19 [Google Scholar] [Crossref]
- Vuong, Q. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57(2), 307-333. https://www.jstor.org/stable/1912557 [Google Scholar]
- Wang, M., Beal, D. J., Chan, D., Newman, D. A., Vancouver, J. B., & Vandenberg, R. J. (2017). Longitudinal research: A panel discussion on conceptual issues, research design, and statistical techniques. Work, Aging and Retirement, 3(1), 1-24. https://doi.org/10.1093/workar/waw033 [Google Scholar] [Crossref]
- Wang, M., & Chan, D. (2011). Mixture latent Markov modeling: Identifying and predicting unobserved heterogeneity in longitudinal qualitative status change. Organizational Research Methods, 14(3), 411-431. https://doi.org/10.1177/1094428109357107 [Google Scholar] [Crossref]
- Wang, J., & Wang, X. (2012). Structural equation modeling: Applications using Mplus. John Wiley & Sons. [Google Scholar]
- Wu, W., Selig, J. P., & Little, T. D. (2013). Longitudinal data analysis. In T. D. Little (Ed.), The Oxford handbook of quantitative methods (pp. 387-410). Oxford University. [Google Scholar]
- Yu, H. T. (2013). Models with discrete latent variables for analysis of categorical data: A framework and a MATLAB MDLV toolbox. Behavior Research Methods, 45, 1036-1047. https://doi.org/10.3758/s13428-013-0335- [Google Scholar] [Crossref]
|