- Camilli, G. ve Shepard, L. A. (1994). Methods for identifying biased test items. London: Sage Publications. [Google Scholar]
- de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34, 115-130. [Google Scholar]
- de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199 [Google Scholar]
- de la Torre, J., & Douglas, J. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333-353. [Google Scholar]
- de la Torre, J., & Lee, Y. S. (2010). A note on the invariance of the DINA model parameters. Journal of Educational Measurement, 47, 115–127. [Google Scholar]
- DiBello, L. V., Stout, W. F., & Roussos, L. A. (1995). Unified cognitive/psychometric diagnostic assessment likelihood-based classification techniques. In P. Nichol, S. Chipman, & R. Brennan (Eds.), Cognitive diagnostic assessment (pp. 361-389). Hillsdale, NJ: Lawrence Erlbaum. [Google Scholar]
- Embretson, S. E. (1984). A general latent trait model for response processes. Psychometrika, 49, 175–186. [Google Scholar]
- Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26, 333-352. [Google Scholar]
- Hambleton, R K., Swaminathan, H. ve Rogers, H. J. (1991). Fundamentals of item response theory. London: Sage Publication [Google Scholar]
- Hartz, S. (2002). Skills diagnosis: Theory and practice. User Manual for Arpeggio software. Princeton, NJ: ETS. [Google Scholar]
- Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191. [Google Scholar]
- Hou, L., de la Torre, J. D., and Nandakumar, R. (2014). Differential item functioning assessment in cognitive diagnostic modeling: application of the Wald test to investigate DIF in the DINA model. Journal of Educational Measurement, 51, 98–125. [Google Scholar]
- Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258-272. [Google Scholar]
- Li, F. (2008). A modified higher-order DINA model for detecting differential item functioning and differential attribute functioning (Doctoral dissertation). University of Georgia, Athens. [Google Scholar]
- Li, X., and Wang, W. C. (2015). Assessment of differential item functioning under cognitive diagnosis models: the DINA model example. Journal of Educational Measurement, 52, 28–54. [Google Scholar]
- Osterlind, S. (1983). Test item bias. Newbury Park: Sage Publications. [Google Scholar]
- Raju, N. S. (1988). The area between two item characteristic curves. Psychometrika, 53, 495-502. [Google Scholar]
- Rogers, S. J., & Swaminathan, H. (1993). A comparison of logistic regression and MH procedures for detecting differential item functioning. Applied Psychological Measurement, 17, 105–116. [Google Scholar]
- Tatsuoka, K. (1985). A probabilistic model for diagnosing misconceptions in the pattern classification approach. Journal of Educational Statistics, 12, 55-73. [Google Scholar]
- Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287-305. [Google Scholar]
- Templin, J. L., Henson, R. A., & Douglas, J. (2006). General theory and estimation of cognitive diagnosis models: Using Mplus to derive model estimates. Manuscript under review. [Google Scholar]
- Zhang, W. (2006). Detecting Differential Item Functioning Using the DINA Model. Doctoral dissertations, University of North Carolina at Greensboro, Greensboro, NC. [Google Scholar]
- Zumbo, D. B. (1999). A Handbook on the Theory and Methods of Differential Item Functioning (DIF): Logistic regression modeling as a unitary framework for binary and likert-type item scores. Ottowa: Directorate of Human Resources Research and Evaluation, Department of National Defense. [Google Scholar]
|