- Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198. [Google Scholar]
- Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 191–208). London: Springer. [Google Scholar]
- Anagnostopoulou, K., Hatzinikita, V. & Christidou, V. (2012a). PISA and biology school textbooks: The role of visual material. Procedia–Social and Behavioral Sciences, 46, 1839-1845. [Google Scholar]
- Anagnostopoulou, K., Hatzinikita, V. & Christidou, V. (2012b). Exploring visual material in PISA and school-based examination tests. SKHOLE, 17, 47-56. [Google Scholar]
- Anderson, K. J. B. (2012). Science education and test-based accountability: Reviewing theirrelationship and exploring implications for future policy. Science Education, 96(1), 104–129. [Google Scholar]
- Ardasheva, Y., Wang, Z., Roo, A. K., Adesope, O. O., & Morrison, J. A. (2018). Representation visuals’ impacts on science interest and reading comprehension of adolescent English learners. Journal of Educational Research, 111(5), 631–643. doi: 10.1080/00220671.2017.1389681 [Google Scholar] [Crossref]
- Altun, E., Sendur, G., & Alpat, S. (2016). Comparison of the main features and the chemistry questions of university entrance examinations in China and Turkey. Kastamonu Education Journal, 24(2), 857-874. [Google Scholar]
- Atalmis, E. H., Avgin, S. S., Demir, P., & Yildirim, B. (2016). Examination of science achievement in the 8th grade level in Turkey in terms of national and international exams depending upon various variables. Journal of Education and Practice, 7(10), 152–162. [Google Scholar]
- Borji, V. & Sánchez, A. (2019). An exploratory analysis of the representations of functions in the university entrance exam in Spain and Iran. Eurasia - Journal of Mathematics, Science and Technology Education, 15(8), 1-12. doi:10.29333/ejmste/106258 [Google Scholar] [Crossref]
- Bretschneider, P., Cirilli, S., Jones, T., Lynch, S., & Wilson, S. A. (2017). Document review as a qualitative research data collection method for teacher research. In P. Pringle (Ed). SAGE Research Methods Cases. Thousand Oaks, CA: Sage Publications. [Google Scholar]
- Bulunuz, N., Bulunuz, M., Karagoz, F., & Tavsanli, Ö. F. (2016). Achievement levels of middle school students in the standardized science and technology exam and formative assessment probes: A Comparative study. Journal of Education in Science, Environment and Health, 2(1), 33-50. [Google Scholar]
- Carney, R. N. & Levin, J. R. (2002). Pictorial illustrations still improve students’learning from text. Educational Psychology Review, 14, 5-26. [Google Scholar]
- Chang, N. (2012). The role of drawing in young children’s construction of science concepts. Early Childhood Education Journal, 40, 187–193. [Google Scholar]
- Cheng, M. M. W., & Gilbert, J. K. (2014). Students’ visualization of metallic bonding and the malleability of metals. International Journal of Science Education, 36(8), 1373-1407. [Google Scholar]
- Coleman, J. M., McTigue, E. M., Smolkin, L. B. (2011). Elementary teachers’ use of graphical representation in science teaching. Journal of Science Teacher Education, 22(7), 613-643. [Google Scholar]
- Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches. Thousand Oaks, CA: Sage. [Google Scholar]
- Dupuis, J., & Abrams, E. (2017). Student science achievement and the integration of Indigenous knowledge on standardized tests. Cultural Studies of Science Education, 12, 581-604. doi:10.1007/s11422-016-9728-6 [Google Scholar] [Crossref]
- Feniger, Y. & Lefstein, A. (2014). How not to reason with PISA data: An ironic investigation. Journal of Education Policy, 29, 845–855. [Google Scholar]
- Grey, S. & Morris, P. (2018). PISA: Multiple ‘truths’ and mediatised global governance. Comparative Education, 54(2), 109-131. doi:10.1080/03050068.2018.1425243 [Google Scholar] [Crossref]
- Gross, M. M., Wright, M. C., & Anderson, O. S. (2017). Effects of image-based and textbased active learning exercises on student examination performance in a musculoskeletal anatomy course. Anatomical Sciences Education, 10(5), 444-455. doi:10.1002/ase.1684 [Google Scholar] [Crossref]
- Guo, D., Wright, K. L., & McTigue, E. M. (2018). A content analysis of visuals in elementary school textbooks. The Elementary School Journal, 119(2), 244–269. doi: 10.1086/700266 [Google Scholar] [Crossref]
- Guo, D., Zhang, S., McTigue, E., & Wright, L. K. (2017, April). Do you get the picture?: A meta-analysis of the effect of graphics on reading comprehension. Paper presented at the American Educational Research Association conference, San Antonio. [Google Scholar]
- Hamilton, L.S. , & Berends, M. ( 2006, April 8-12). Instructional practices related to standards and assessments (Rand Working Paper No. WR-374-EDU). Paper presented at the 2006 annual meeting of the American Educational Research Association, San Francisco, CA. [Google Scholar]
- He, J., Barrera-Pedemonte, F., & Buchholz, J. (2019). Cross-cultural comparability of noncognitive constructs in TIMSS and PISA. Assessment in Education: Principles, Policy & Practice, 26(4), 369-385. doi:10.1080/0969594X.2018.1469467 [Google Scholar] [Crossref]
- Hursh, D. (2001). Neoliberalism and the control of teachers, students, and learning: The rise of standards, standardization, and accountability. Cultural Logic, 4(1), 3–15. [Google Scholar]
- Incikabi, L., Pektas, M., & Sule, C. (2016). An analysis of SSIPE mathematics and science items in terms of PISA problem solving framework. Journal of Kirsehir Education Faculty, 17(2), 649-662. [Google Scholar]
- Konecny, T., Basl, J., Myslivecek, J., & Simonova, N. (2012). Alternative models of entrance exams and access to higher education: The case of the Czech Republic. Higher Education, 63(2), 219-235. [Google Scholar]
- Kuramoto, N., & Koizumi, R. (2018). Current issues in large-scale educational assessment in Japan: Focus on national assessment of academic ability and university entrance examinations. Assessment in education: Principles, policy, and practice, 25(4), 415-433. doi: 10.1080/0969594X.2016.1225667 [Google Scholar] [Crossref]
- Kusayanagi, C. (2013). Constructing and understanding an incident as a social problem: A case study of university entrance exam cheating in Japan. Human Studies, 36(1), 133-148. [Google Scholar]
- LaDue, N. D., Libarkin, J. C., & Thomas, S. R. (2015). Visual representations on high school biology, chemistry, earth science, and physics assessments. Journal of Science Education and Technology, 24(6), 818–834. doi: 10.1007/s10956-015-9566-4 [Google Scholar] [Crossref]
- Lee, J., & Stankov, L. (2018). Non-cognitive predictors of academic achievement: Evidence from TIMSS and PISA. Learning and Individual Differences, 65, 50-64. doi: 10.1016/j.lindif.2018.05.009 [Google Scholar] [Crossref]
- Lidar, M., Lundqvist, E., Ryder, J., & Ostman, L. (2020). The transformation of teaching habits in relation to the introduction of grading and national testing in science education in Sweden. Research in Science Education, 50, 151–173. doi: 10.1007/s11165-017-9684-5 [Google Scholar] [Crossref]
- Lindner, M. A., Eitel, A., Strobel, B., & Koller, O. (2017). Identifying processes underlying the multimedia effect in testing: An eye-movement analysis. Learning and Instruction, 47, 91-102. [Google Scholar]
- Liu, D. (2017). An exploration of experiences of low socioeconomic chinese students who achieved high scores on the national college entrance exam (Doctoral Dissertation). University of Northern Colorado, Greeley, CO. [Google Scholar]
- Lofgren, R., & Lofgren, H. (2017). Swedish students’ experiences of national testing in science: A narrative approach. Curriculum Inquiry, 47, 390–410. doi: 10.1080/03626784.2017.1368350 [Google Scholar] [Crossref]
- Lohse, G. L., Biolsi, K., Walker, N., & Rueler, H. (1994). A classification of visual representations. Communications of the A.C.M., 37(12), 36-49. [Google Scholar]
- MacDonald, K., & Tipton, C. (1996). Using Documents. N.Gilbert (ed.), Researching Social Life. London: Sage. [Google Scholar]
- Martin, M. O., Mullis, I. V. S., Foy, P., & Stanco, G. M. (2012). TIMSS 2011 international results in science. Chestnut Hill, MA: TIMSS & PIRLS International Study. Center, Boston College. [Google Scholar]
- Mayer, R. E. (2013). Fostering learning with visual displays. In G. Schraw, M. T. McCrudden, & D. Robinson (Eds.), Learning through visual displays (pp. 47–74). Charlotte, NC: Information Age Publishing. [Google Scholar]
- McTigue, E.M., & Flowers, A.C. (2010). Illustration inquiry: Visual literacy in science. Science Scope, 33(9), 17–22. [Google Scholar]
- McTigue, E. M. & Flowers, A. C. (2011). Science visual literacy: Learners’ perceptions and knowledge of diagrams. The Reading Teacher, 64(8), 578–589. [Google Scholar]
- Merriam, S. B. (2002). Qualitative research in practice: examples for discussion and analysis. San Francisco, CA: Jossey-Bass. [Google Scholar]
- Ministry of National Education (MNE). (2019). PISA 2018 Turkey Preliminary Report. Education Analysis and Evaluation Reports Series. [Google Scholar]
- Mohammadi, R., Moradi, N., & Goldasteh, A. (2019). A comparative study of higher education entrance examinations in Iran with some selected countries to optimize entrance examination. Iranian Journal of Comparative Education, 2(4), 518-532. doi: 10.22034/IJCE.2020.105009 [Google Scholar] [Crossref]
- Moline, S. (1995). I see what you mean. York, ME: Stenhouse Publishing. [Google Scholar]
- Moon, T. R., Brighton, C. M., Jarvis, J. R., Hall, C. J. (2007). State standardized testing programs: Their effects on teachers and students. Storrs: National Research Center on the Gifted and Talented, University of Connecticut. [Google Scholar]
- Newman, M. & Ogle, D. (2019). Visual literacy: Reading, thinking, and communicating with visuals. London, SE: The Rowman&Littlefield Publishing. [Google Scholar]
- National Research Council (NRC). (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (FK12). Washington, DC: National Academies Press. [Google Scholar]
- National Research Council (NRC). (2013). Developing assessments for the Next Generation Science Standards. Washington, DC: National Academy Press. [Google Scholar]
- NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press. [Google Scholar]
- OECD (2015). PISA 2015 Science Test Questions. Retrieved from https://www.oecd.org/pisa/pisaproducts/PISA2015-Released-FT-Cognitive-Items.pdf [Google Scholar]
- Olcme Secme ve Yerlestirme Merkezi. (OSYM). (2019). 2019-YKS Evaluation Report. Retrieved from https://www.osym.gov.tr/TR,16919/2019-yks-degerlendirme-raporu.html [Google Scholar]
- Olcme Secme ve Yerlestirme Merkezi.(OSYM). (2020). About and history. Retrieved from https://www.osym.gov.tr/TR,8789/hakkinda.html [Google Scholar]
- Petterson, R. (2002). Information design: An introduction. Philadelphia: John Benjamin. [Google Scholar]
- Preston, C. M. (2017). Effect of a diagram on primary students’ understanding about electric circuits. Research in Science Education, 1-24. doi:10.1007/s11165-017-9662-y. [Google Scholar] [Crossref]
- Rau, M. A. (2018). Making connections among multiple visual representations: how do sense-making competencies and perceptual fluency relate to learning of chemistry knowledge? Instructional Science, 46(2), 209 –243. doi:10.1007/s11251-017-9431-3 [Google Scholar] [Crossref]
- Rau, M. A., Michaelis, J. E., Fay, N. (2015). Connection making between multiple graphical representations: A multi-methods approach for domain-specific grounding of an intelligent tutoring system for chemistry. Computers& Education, 82, 460–485. [Google Scholar]
- Roberts, K. L., Norman, R. R., Duke, N. K., Morsink, P., Martin, N. M., & Knight, J. A. (2013). [Google Scholar]
- Diagrams, timelines, and tables—Oh, my! Fostering graphical literacy. Reading Teacher, 67, [Google Scholar]
- 12–24. [Google Scholar]
- Rodrigo, A., Penas, A., Miyao, Y., & Kando, N. (2018). Do systems pass university entrance exams? Information Processing and Management, 54, 564-575. doi: 10.1016/j.ipm.2018.03.002 [Google Scholar] [Crossref]
- Said, Z. (2016). Science education reform in Qatar: Progress and challenges. Eurasia Journal of Mathematics, Science & Technology Education, 12(8), 2253-2265. [Google Scholar]
- Saß, S., Schütte, K., & Lindner, M. A. (2017). Test-takers’ eye movements: Effects of integration aids and types of graphical representations. Computers & Education, 109, 85-97. doi: 10.1016/j.compedu.2017.02.007 [Google Scholar] [Crossref]
- Saß, S., Wittwer, J., Senkbeil, M., & Köller, O. (2012). Pictures in test items: Effects on response time and response correctness. Applied Cognitive Psychology, 26(1), 70–81. [Google Scholar]
- Schraw, G., McCrudden, M. T., & Robinson, D. (2013). Visual displays and learning. Theoretical and practical considerations. In G. Schraw, M. T. McCrudden, & D. Robinson (Eds.), Learning through visual displays (pp. 3–19). Charlotte, NC: Information Age Publishing. [Google Scholar]
- Schraw, G., & Paik, E. (2013). Toward a typology of instructional visual displays. In G. Schraw, M. T. McCrudden, & D. Robinson (Eds.), Learning through visual displays (pp. 97–129). Charlotte, NC: Information Age Publishing. [Google Scholar]
- Setiawan, H., Garnier, K., & & Isnaeni, W. (2019). Rethinking standardized test of science education in Indonesian high school. Journal of Physics: Conference Series. [Google Scholar]
- She, H. C., Stacey, K., & Schmidt, W. H. (2018). Science and mathematics literacy: PISA for better school education. International Journal of Science and Mathematics Education, 16(1), 1-5. doi:10.1007/s10763-018-9911-1 [Google Scholar] [Crossref]
- Shi, W. Z., He. X., Wang, Y., Fan, Z. G. & Guo, L. (2016). PISA and TIMSS science score, which clock is more accurate to indicate national science and technology competitiveness?. Eurasia Journal of Mathematics, Science & Technology Education, 12(4), 965-974. doi: 10.12973/eurasia.2016.1239a [Google Scholar] [Crossref]
- Sievertsen H. H., Gino, F., & Piovesan, M. (2016). Cognitive fatigue influences students’ performance on standardized tests. Proceedings of the National Academy of Sciences. 113(10), 2621–2624. [Google Scholar]
- Slough, S. W., McTigue, E. M., Kim, S., & Jennings, S. K. (2010). Science textbooks’ use of graphical representation: A d scriptive analysis of four sixth-grade science texts. Reading Psychology, 31(3), 301–325. [Google Scholar]
- Stieff, M., Werner, S., DeSutter, D., Franconeri, S., & Hegarty, M. (2020). Visual chunking as a strategy for spatial thinking in STEM. Cognitive Research: Principles and Implications, 5(18), 1-15. doi.org/10.1186/s41235-020-00217-6. [Google Scholar]
- Tippett, C. D. (2016). What recent research on diagrams suggests about learning with rather than learning from visual representations in science. International Journal of Science Education, 38(5), 725-746. doi: 10.1080/09500693.2016.1158435 [Google Scholar] [Crossref]
- Turkoguz, S., Balim, A., & Bardakci, V. (2019). A comparison of 2016 Izmir and 2011 Turkey data by TIMSS 2011 science test. Journal of the Human and Social Science Researches, 8(1), 64-90. [Google Scholar]
- Vekeri, I. (2002). What is the value of graphical displays? Educational Psychology, 14(3), 261-312. [Google Scholar]
- Visone, J. (2010). Science or reading: What is being measured by standardized tests? American Secondary Education, 39(1), 95–112. [Google Scholar]
- Wiberg, M. & Rolfsman, E. (2019). The association between science achievement measures in schools and TIMSS science achievements in Sweden. International Journal of Science Education, 41(16), 2218-2232. doi:10.1080/09500693.2019.1666217 [Google Scholar] [Crossref]
- Wilson, R. E., & Bradbury, L. U. (2016). The pedagogical potential of drawing and writing in a primary science multimodal unit. International Journal of Science Education, 38(17), 2621-2641. [Google Scholar]
- Wilson, R. & Bradbury, L. (2019). Methods and strategies: Multiple modes in science instruction. Science and Children, 57(1), 77-81. [Google Scholar]
- Yeh, Y., & McTigue, E. (2009). The frequency, variation and function of graphical representations within standardised state tests. School Science and Mathematics, 109(8), 435–449. [Google Scholar]
- Yemini, M., & Gordon, N. (2017). Media representations of national and international standardized testing in the Israeli education system. Discourse: Studies in the Cultural Politics of Education, 38(2), 262–276. doi: 10.1080/01596306.2015.1105786 [Google Scholar] [Crossref]
- Yin R. K. (2009). Case study research: design and methods. Los Angeles, CA: Sage. [Google Scholar]
- Zhang, Y. (2016). National college entrance exam in China: Perspectives on education quality and equity. Singapore: Springer. [Google Scholar]
- Zhang, Y., Chen, D. S., & Wang, W. (2014). The heterogeneous effects of ability grouping on national college entrance exam performance–evidence from a large city in China. International Journal of Educational Development, 39, 80-91. doi: 10.1016/j.ijedudev.2014.08.012 [Google Scholar] [Crossref]
|