International Association of Educators   |  ISSN: 2834-7919   |  e-ISSN: 1554-5210

Original article | International Journal of Progressive Education 2020, Vol. 16(6) 15-32

A Review of Meta-Analysis Articles in Educational Sciences Conducted Between 2010 and 2019 in Turkey

Mehmet Taha Eser & Meltem Yurtçu

pp. 15 - 32   |  DOI:   |  Manu. Number: MANU-2006-08-0001.R1

Published online: December 07, 2020  |   Number of Views: 221  |  Number of Download: 652


This study examines meta-analysis studies published in the field of educational sciences from 2010–2019, in journals indexed within the scope of the TÜBİTAK ULAKBİM TR Directory. Of the 163 studies scanned, 26 meta-analysis studies that meet the inclusion criteria constitute the sample of this content analysis study. Within this research, a meta-analysis control form (MACF) developed by the researchers was used. The coding made by each of the two researchers has been considered, and it is concluded that the coherence between the codings was is sufficient (82%). The results of this research indicate that the most obvious problems in meta-analysis studies are: not establishing hypotheses; not calculating reliability between encoders; not using a flow chart (in terms of traceability); the use of commercial software in the analysis; not combining effect sizes on a common metric; use of the fail-safe N in determining publication bias; evaluation of I2 on the basis of categories; and decision making according to the result of the heterogeneity test in model determination. It is thought that the current study will contribute methodologically to the avoidance of errors in future meta-analysis studies.

Keywords: Meta-analysis, Methodology, Content analysis,

How to Cite this Article?

APA 6th edition
Eser, M.T. & Yurtcu, M. (2020). A Review of Meta-Analysis Articles in Educational Sciences Conducted Between 2010 and 2019 in Turkey . International Journal of Progressive Education, 16(6), 15-32. doi: 10.29329/ijpe.2020.280.2

Eser, M. and Yurtcu, M. (2020). A Review of Meta-Analysis Articles in Educational Sciences Conducted Between 2010 and 2019 in Turkey . International Journal of Progressive Education, 16(6), pp. 15-32.

Chicago 16th edition
Eser, Mehmet Taha and Meltem Yurtcu (2020). "A Review of Meta-Analysis Articles in Educational Sciences Conducted Between 2010 and 2019 in Turkey ". International Journal of Progressive Education 16 (6):15-32. doi:10.29329/ijpe.2020.280.2.

  1. Aloe, A. M., Amo, C. L., & Shanahan, M. E. (2014). Classroom management self-efficacy and burnout: a multivariate meta-analysis. Educ Psychology Review. 26(1), 101-126. doi:10.1007/s10648-013-9244-0 [Google Scholar] [Crossref] 
  2. Borenstein, M. (2019). Common mistakes in meta-analysis and how to avoid them. Englewood, NJ: Biostat. [Google Scholar]
  3. Borenstein, M., Hedges, L., Higgins, J., & Rothstein, H. (2009). Introduction to meta-analysis. West Sussex, England: Wiley. [Google Scholar]
  4. Borenstein, M., Hedges, L., & Rothstein, H. (2007). Meta-analysis fixed effect vs. random effects. Retrieved from: [Google Scholar]
  5. Başol, G., Doğuyurt, M. F., & Demir, S. (2016). Türkiye örnekleminde meta analiz çalışmalarının içerik analizi ve metodolojik değerlendirilmesi. International Journal of Human Sciences, 13(1), 714–745. doi:10.14687/ijhs.v13i1.3460 [Google Scholar] [Crossref] 
  6. Card, N. A. (2012). Applied meta-analysis for social science research. New York, NY: Guilford Press. [Google Scholar]
  7. Cohen, L., & Manion, L (2001). Research Methods in Education (5th ed.). New York: Routledge Falmer. [Google Scholar]
  8. Cook, T. D., Cooper, H., Cordray, D. S., Hartmann, H., Hedges, L. V., Light, R. J., Louis, T. A., & Mosteller, F. (1992). Meta-analysis for explanation: A casebook. New York, NY: Russell Sage Foundation. [Google Scholar]
  9. Cooper, H., & Hedges, L. (1994). The handbook of research synthesis. New York, NY: Russell Sage. [Google Scholar]
  10. Cooper, H., Hedges, L. V., & Valentine, J. C. (2009). The handbook of research synthesis and meta-analysis. New York: Russell Sage Foundation.  [Google Scholar]
  11. Côté, I. M., & Jennions, M. D. (2013). The procedure of meta-analysis in a nutshell. In J. Koricheva, J. Gurevitch, & K. Mengersen (Eds.), The handbook of meta-analysis in ecology and evolution (pp. 14–24). Princeton: Princeton University Press.  [Google Scholar]
  12. Darabi, A., Liang, X., Suryavanshi, R., & Yurekli, H. (2013). Effectiveness of online discussion strategies: A meta-analysis. American Journal of Distance Education, 27(4), 228–241. doi:10.1080/08923647.2013.837651 [Google Scholar] [Crossref] 
  13. DeCoster, J. (2004). Meta-analysis notes. Retrieved February, 2, 2020 from [Google Scholar]
  14. Durlak, J. (2009). How to select, calculate, and interpret effect sizes. Journal of Pediatric Psychology, 34(9), 917–928. [Google Scholar]
  15. Ellis, P. D. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge: Cambridge University Press. [Google Scholar]
  16. Eser, M. T., Yurtçu, M., & Aksu, G. (2020). R Programlama Dili ve Jamovi ile Meta-Analiz Uygulamaları. Ankara: Pegema Yayıncılık. [Google Scholar]
  17. Field, A. P. (2001). Meta-analysis of correlation coefficients: A Monte Carlo comparison of fixed- and random-effects methods. Psychological Methods, 6(2), 161–180, doi: 10.1037/1082-989x.6.2.161 [Google Scholar] [Crossref] 
  18. Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis. Review of Educational Research, 82(3), 300–329. doi: 10.3102/0034654312457206 [Google Scholar] [Crossref] 
  19. Geyskens, I., Krishnan, R., Steenkamp, J.-B. E. M., & Cunha, P. V. (2009). A review and evaluation of meta-analysis practices in management research. Journal of Management, 35(2), 393–419. [Google Scholar] [Crossref] 
  20. Glass, G. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5(10), 3-8. [Google Scholar]
  21. Hagger, M. S., Wood, C., Stiff, C., & Chatzisarantis, N. L. D. (2010). Ego depletion and the strength model of self-control: A meta-analysis. Psychological Bulletin, 136(4), 495–525. [Google Scholar] [Crossref] 
  22. Harrer, M., Cuijpers, P., Furukawa, T. A, & Ebert, D. D. (2019). Doing meta-analysis in R: A hands-on guide. Retrieved from https: // [Google Scholar]
  23. Hedges L. V., & Olkin I. (1985). Statistical methods for meta-analysis. San Diego, CA: Academic Press. [Google Scholar]
  24. Higgins J. P. T., & Green, S. (Eds.). (2011). Cochrane handbook for systematic reviews of interventions (version 5.1.0). Retrieved from [Google Scholar]
  25. Higgins J., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., & Welch V. A. (Eds.). (2019). Cochrane handbook for systematic reviews of interventions (2nd ed.). Chichester, England: John Wiley & Sons. [Google Scholar]
  26. Higgins, J., & Thompson, S. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 1539–1558. [Google Scholar]
  27. Higgins, J., Thompson, S., Deeks, J., & Altman, D. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 2003(327), 557–560. [Google Scholar]
  28. Hill, D. T., Davis, A. P., Roos, J. M., & French, M. T. (2019). Limitations of fixed-effects models for panel data. Sociological Perspectives. [Google Scholar] [Crossref] 
  29. Huedo-Medina, T., Sanchez-Meca, J., Marín-Martínez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis: Q statistic or I2 Index? Psychological Methods, 11(2), 193–206. doi:10.1037/1082-989X.11.2.193. [Google Scholar] [Crossref] 
  30. Ioannidis, J., & Trikalinos, T. (2007). The appropriateness of asymmetry tests for publication bias in meta-analysis: A large survey. Canadian Medial Association Journal, 176(8), 1091–96. [Google Scholar]
  31. Iyengar, S., & Greenhouse, J. B. (1988). Selection models and the file drawer problem. Statistical Science, 3(1), 109–117. Retrieved from [Google Scholar]
  32. Jackson, D., & Bowden, J. (2016). Confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: Should we use unequal tails? BMC Medical Research Methodology, 16(1), 118. doi: 10.1186/s12874-016-0219-y [Google Scholar] [Crossref] 
  33. Karasar, N. (2011). Bilimsel araştırma yöntemleri. Ankara: Nobel Yayınları. [Google Scholar]
  34. Lin, L., & Chu, H. (2018). Quantifying publication bias in meta-analysis. Biometrics, 74(3), 785–794. doi:10.1111/biom.12817. [Google Scholar] [Crossref] 
  35. Lipsey, M., & Wilson, D. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage. [Google Scholar]
  36. McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276–282. [Google Scholar]
  37. Miles, M, B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Thousand Oaks, CA: Sage. [Google Scholar]
  38. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. doi: 10.1371/journal.pmed.1000097  [Google Scholar] [Crossref] 
  39. Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, 1. [Google Scholar] [Crossref] 
  40. Mullen, B. (1989). Advanced BASIC meta-analysis. Hillsdale, NJ: Erlbaum. [Google Scholar]
  41. Nakagawa, S., Noble, D. W. A., Senior, A. M., & Lagisz, M. (2017). Meta-evaluation of meta-analysis: Ten appraisal questions for biologists. BMC Biology. 15, 18. [Google Scholar] [Crossref] 
  42. Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638–641. [Google Scholar] [Crossref] 
  43. Rosenthal, R. (1991). Meta-analytic procedures for social research. Newbury Park, CA: Sage. [Google Scholar] [Crossref] 
  44. Rosenthal, R. (1995). Writing meta-analytic reviews. Psychological Bulletin, 118(2), 183–192. [Google Scholar] [Crossref] 
  45. Rosenthal, R., & DiMatteo, M. R. (2001). Meta-analysis: Recent developments in quantitative methods for literature reviews. Annual Review of Psychology. 52, 59–82. doi: 10.1146/annurev.psych.52.1.59 [Google Scholar] [Crossref] 
  46. Rothstein, H. R., Sutton, A. J., & Borenstein, M. (2006). Publication bias in meta-analysis: Prevention, assessment and adjustments. West Sussex, England: Wiley. [Google Scholar]
  47. Scargle, J. D. (2000). Publication bias: The ‘file drawer’ problem in scientific inference. Journal of Scientific Exploration, 14(1), 91–106.  [Google Scholar]
  48. Thiese, M. S., Ronna, B., & Ott, U. (2016). P value interpretations and considerations. Journal of Thoracic Disease, 8(9), 928–931. [Google Scholar]
  49. Vevea, J. L., & Woods, C. M. (2005). Publication bias in research synthesis: Sensitivity analysis using a priori weight functions. Psychological Methods, 10(4), 428–443. [Google Scholar] [Crossref] 
  50. Van Aert, R. C. M., Wicherts, J. M., & van Assen, M. A. L. M. (2019). Publication bias examined in meta-analyses from psychology and medicine: A meta-meta-analysis. PLoS ONE 14(4): e0215052. [Google Scholar] [Crossref] 
  51. Williams, L., Greenwood, C., & Parker, R. (2013). Academic benefits of peer tutoring: A meta-analytic review of single-case research. School Psychology Review, 42(1), 39–55. [Google Scholar]
  52. Yıldırım, A., & Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri (6. baskı). Ankara: Seçkin Yayıncılık. [Google Scholar]