- Battista, M. T. (1994) On Greeno's Environmental/model view of conceptual domains: A spatial/geometric perspective. Journal for Research in Mathematics Education, 25(1), 86-99. [Google Scholar]
- Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). The importance of spatial visualization and cognitive development for geometry learning in pre service elementary teachers. Journal for Research in Mathematics Education, 13(5), 332-340. [Google Scholar]
- Burnet, S. A., & Lane, D. M. (1980). Effects of academic instruction on spatial visualization. Intelligence, 4(3) 233-242. [Google Scholar]
- Büyüköztürk, Ş. (2012). Sosyal bilimler için veri analizi el kitabi: İstatistik, araştirma deseni, SPSS uygulamaları ve yorum (16. Baskı) [Handbook of data analysis for social sciences: Statistics, research design, SPSS practice and interpretation (16. Edition)]. Pegem Akademi. [Google Scholar]
- Cardillo, R., Vincenzi, I., & Gallani, A. (2017). Spatial tasks and emotional factors: A study conducted with the Italian adaptation of the Child Spatial Anxiety Questionnaire (CSAQ). Psicologia Clinica Dello Sviluppo, 21(3), 483-502. [Google Scholar]
- Casey, M. B., Nutall, R. L., & Pezaris, E. (2001). Spatial–mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross national gender based items. Journal for Research in Mathematics Education, 32(10), 28–57. [Google Scholar]
- Casey, B. M., Pezaris, E., Fineman, B., Pollock, A., Demers, L., & Dearing, E. (2015). A longitudinal analysis of early spatial skills compared to arithmetic and verbal skills as predictors of fifth-grade girls’ math reasoning. Learning and Individual Differences, 40, 90–100. doi:10.1016/j.lindif.2015.03.028 [Google Scholar] [Crossref]
- Clements, D. H. (1998). Geometric and spatial thinking in young children. National Science Foundation. [Google Scholar]
- Clements D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Gruws (Ed.). Handbook of research on mathematics teaching and learning (pp. 420-464). MacMilan. [Google Scholar]
- Contero, M., Naya, F., Compnay, P., Saorin, J. K., & Conesa, J. (2005). Improving visualization skills in engineering education. Computer Graphics in Education, 25(5), 24-31. [Google Scholar]
- Çokluk, Ö., Şekercioğlu, G., & Büyüköztürk, Ş. (2010). Sosyal bilimler için çok değişkenli istatistik SPSS ve LISREL uygulamaları [Multivariate statistics SPSS and LISREL applications for social sciences]. PegemAkademi. [Google Scholar]
- DeVellis, R. (2003). Scale development: theory and applications (2nd ed.). Sage. [Google Scholar]
- Dursun, Ö. (2010). The relationships among preservice teachers’spatial visualization ability, geometry self-efficacy, and spatial anxiety (Master Thesis). Middle East Technical University, Ankara. [Google Scholar]
- Ekstrom, R.B., French, J.W., Harman, H.H. (1976). Manual for Kit of Factor Referenced Cognitive Tests. Educational Testing Service. [Google Scholar]
- Elliot, J., & Smith, I. M. (1983). An international dictionary of spatial tests. The NFER-Nelson Publishing Company, Ltd. [Google Scholar]
- Erkek, Ö., & Işıksal Bostan, M. (2015). The role of spatial anxiety, geometry self-efficacy and gender in predicting geometry achievement. Elementary Education Online, 14(1), 164-180. [Google Scholar]
- Ferguson, A. M., Maloney, E. A., Fugelsang, J., & Risko, E. F. (2015). On the relation between math and spatial ability: The case of math anxiety. Learning and Individual Differences, 39, 1–12. doi:10.1016/j.lindif.2015.02.007 [Google Scholar] [Crossref]
- Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2013). Teachers' spatial anxiety relates to 1st‐and 2nd‐graders' spatial learning. Mind, Brain, and Education, 7(3), 196-199. [Google Scholar]
- Hannafin, R. D., Truxaw, M. P., Vermillion, J. R., & Liu, Y. (2008). Effects of spatial ability and instructional program on geometry achievement. The Journal of Educational Research, 101(3), 148-156. [Google Scholar]
- Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55. [Google Scholar]
- Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. SSI Scientific Software International Inc. [Google Scholar]
- Karagöz, Y. (2019). SPSS AMOS META uygulamalı istatistiksel analizler. Nobel Yayıncılık. [Google Scholar]
- Kline, R. B. (2016). Principles and practice of structural equation modeling (Fourth Edition). The Guilford Press. [Google Scholar]
- Lauer, J. E., Esposito, A. G., & Bauer, P. J. (2018). Domain-specific anxiety relates to children’s math and spatial performance. Developmental psychology, 54(11), 2126. [Google Scholar]
- Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30(11/12), 765-779. [Google Scholar]
- Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of gender differences in spatial abilities: A meta-analysis. Child Development, 56, 1479-1498. [Google Scholar]
- Lohman, D. F. (1979). Spatial ability: Individual differences in speed and level (technical report No:9). Aptitude Research Project, School of Education, Stanford University. [Google Scholar]
- Lohman, D. F. (1993). Spatial ability and G. In First Spearman Seminar, University of Plymouth, Plymouth, United Kingdom. [Google Scholar]
- Lord, T. R. (1985). Enhancing the visuo-spatial aptitude of students. Journal of Research in Science Teaching, 22, 395–495. [Google Scholar]
- Lyons, I. M., Ramirez, G., Maloney, E. A., Rendina, D. N., Levine, S. C., & Beilock, S. L. (2018). Spatial Anxiety: A novel questionnaire with subscales for measuring three aspects of spatial anxiety. Journal of Numerical Cognition, 4(3), 526-553. [Google Scholar]
- McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal and neurological influences. Psychological Bulletin, 86, 889-918. [Google Scholar]
- Olkun, S. (2003). Making connections: Improving spatial abilities with engineering drawing activities. International journal of mathematics teaching and learning, 3(1), 1-10. [Google Scholar]
- Özdamar, K. (2017). Ölçek ve test geliştirme yapısal eşitlik modellemesi IBM SPSS, IBM SPSS AMOS ve MINTAB uygulamalı.[Scale and test development Structural equation modeling IBM SPSS, IBM SPSS AMOS and MINTAB applied]. Nisan Kitabevi. [Google Scholar]
- Pellegrino, J. W, Alderton, D. L., & Shute, V. J. (1984). Understanding spatial ability. Educational Psychologist, 19(3), 239-253. [Google Scholar]
- Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2012). Spatial anxiety relates to spatial abilities as a function of working memory in children. The Quarterly Journal of Experimental Psychology, 65(3), 474-487. [Google Scholar]
- Schmitz, S. (1997). Gender-related strategies in environmental development: Effects of anxiety on wayfinding in and representation of a three-dimensional maze. Journal of Environmental Psychology, 17, 215-228. [Google Scholar]
- Schumacker, R. E. & Lomax, R. G. (2004). Beginner’s guide to structural equaiton modeling. Lawrence Erlbaum Associates. [Google Scholar]
- Sorby, S. (2009). Educational research in developing 3-D spatial skills for engineering students. International Journal of Science Education, 31(3), 459–480. [Google Scholar]
- Şencan, H. (2005). Sosyal ve davranışsal ölçümlerde geçerlilik ve güvenirlik [Validity and reliability in social and behavioral measurements]. Seçkin Matbaası. [Google Scholar]
- Tabachnick, B.G., & Fidell, L.S. (2007). Using multivariate statistics (5th ed.). Pearson Education. [Google Scholar]
- Tam, Y. P., Wong, T. T. Y., & Chan, W. W. L. (2019). The relation between spatial skills and mathematical abilities: The mediating role of mental number line representation. Contemporary Educational Psychology, 56, 14-24. [Google Scholar]
- Tartre, L. A. (1990). Spatial orientation skill and mathematical problem solving. Journal for Research in Mathematics Education, 21, 216–229. [Google Scholar]
- Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. American Psychological Association. [Google Scholar]
- Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835. [Google Scholar]
- Yurdugül, H. (2006). The comparison of reliability coefficients in parallel, tau-equivalent, and congeneric measurements. Ankara University, Journal of Faculty of Educational Sciences, 39(1), 15-37. [Google Scholar]
|