International Association of Educators   |  ISSN: 2834-7919   |  e-ISSN: 1554-5210

Original article | International Journal of Progressive Education 2022, Vol. 18(1) 147-173

Designing Technological Content Curriculum Materials Supported by Logger Pro: An Action Research

Ahmet Kumaş

pp. 147 - 173   |  DOI:   |  Manu. Number: MANU-2105-29-0004.R1

Published online: February 01, 2022  |   Number of Views: 91  |  Number of Download: 300


This study aimed to develop teacher guide material for students who are uninterested in physics lessons in high schools. In this context, activities in which measurements are made with Logger Pro sensors, which are computer-applied with the innovative technology in 10th-grade optics subjects, have been developed. The study was carried out with 134 students at the school where the researcher taught in the spring semester of the 2019-2020 academic year. In the research, action research method was used. The action researcher personally intervened in the process at every stage of the implementation process to ensure that the teaching material became applicable. Interview, observation and student documents were used to test the hypotheses of the research. The research process was carried out in six stages: Logger pro-supported experimental application, simulation application, analogy application, associating with daily life, modeling and evaluation. Within the scope of action research, qualitative and quantitative methods were used together. Based on research findings; it has been revealed that the developed material is applicable in all types of schools where the 10th-grade physics course is taught, is understandable, overlaps with the content of the curriculum, and has an evaluation competence that can reflect the learning outcomes of the curriculum. As a result of the applications, the students' group success, understanding levels and application skills in the process improved positively in the five observation steps, but the attitudes and motivations of the students with high academic achievement were negatively affected. The reason for this is that it is seen as a waste of time for successful students to devote too much time to students with low academic success and learning together in order to advance group success. It was determined that the motivation and interest of the students reached the highest levels in the stages where the contents of the studies were supported by simulation and video.

Keywords: Education and Technology, Virtual Computing Laboratory, Technological Content Material, Science Education

How to Cite this Article?

APA 6th edition
Kumas, A. (2022). Designing Technological Content Curriculum Materials Supported by Logger Pro: An Action Research . International Journal of Progressive Education, 18(1), 147-173. doi: 10.29329/ijpe.2022.426.9

Kumas, A. (2022). Designing Technological Content Curriculum Materials Supported by Logger Pro: An Action Research . International Journal of Progressive Education, 18(1), pp. 147-173.

Chicago 16th edition
Kumas, Ahmet (2022). "Designing Technological Content Curriculum Materials Supported by Logger Pro: An Action Research ". International Journal of Progressive Education 18 (1):147-173. doi:10.29329/ijpe.2022.426.9.

  1. Averitt, S., Bugaev, M., Peeler, A., Shaffer, H., Sills, E., Stein, S. at all. (2007). Virtual computing laboratory (VCL). Proceedings of the International Conference on Virtual Computing Initiative (1-16). NC: IBM Corp., Research Triangle Park.  [Google Scholar]
  2. Aydın, B. (2003). Bilgi toplumu oluşumunda bireylerin yetiştirilmesi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 14(14), 183-190.  [Google Scholar]
  3. Babacan, T., & Ören, F. Ş. (2017). Teknoloji destekli mikro öğretim uygulamalarinin fen bilimleri öğretmen adaylarinin teknoloji kullanim algilari üzerine etkisi. Eğitim Teknolojisi Kuram ve Uygulama, 7(2), 193-214.  [Google Scholar] [Crossref] 
  4. Berg, B.L. (2001). Qualitative research methods for the social sciences (4. baskı). Boston: Allyn and Bacon.  [Google Scholar]
  5. Bruffee, K. A. (1987). The art of collaborative learning. Change: The Magazine of Higher Learning, 19(2), 42-47.  [Google Scholar]
  6. Bruffee, K. A. (1999). Collaborative learning: Higher education, interdependence, and the authority of knowledge. Johns Hopkins University Press, 2715 North Charles Street, Baltimore, MD 21218-4363.  [Google Scholar]
  7. Cangüven, H. D., Oya, Ö. Z., & Sürmeli, H. (2017). Türkiye Hong Kong Fen Eğitimi Karşılaştırılması. International Journal of Eurasian Education and Culture, 2(2), 21-41.  [Google Scholar]
  8. Celik, H., Kirindi, T., & Kotaman, Y. A. (2020). The Effect of the Computer-Based Analogy Used in Science Teaching on Learning Outcomes. Journal of Turkish Science Education, 17(1), 73-93. doi: 10.36681/tused.2020.14  [Google Scholar] [Crossref] 
  9. Dillenbourg, P., Järvelä, S., & Fischer, F. (2009). The evolution of research on computer-supported collaborative learning. In Technology-enhanced learning (pp. 3-19). Springer, Dordrecht.  [Google Scholar]
  10. Dong, B., Zheng, Q., Quiao, M., Shu, J. and Yang, J. (2009). BlueSky cloud framework: an e-learning framework embracing cloud computing. Lecture Notes in Computer Science, 5931, 577-582.  [Google Scholar]
  11. Erickson, T., & Cooley, B. (2007). A Den of Inquiry: Data-Rich Labs for Introductory Physics (Volume 2, Mechanics with Sensors). eeps media. [Google Scholar]
  12. Eysenbach, G., & Köhler, C. (2002). How do consumers search for and appraise health information on the world wide web? Qualitative study using focus groups, usability tests, and in-depth interviews. BMJ, 324(7337), 573–577. [Google Scholar] [Crossref] 
  13. Game of Archery (2020). Rekor oyun archery game. Turkey. [Google Scholar]
  14. Gladhart, M. A. (2001). A model for integrating technology to meet accreditation standards for teacher education programs. Kansas State University. [Google Scholar]
  15. Haron, M. Z., Othman, M. K. H., & Awang, M. I. (2019). Technology-assisted teaching aids in teaching and learning: Evidence from the Malaysian Tahfiz Ulul Albab Model (TMUA). International Journal of Innovative Technology and Exploring Engineering, 8(12), 4401-4404. DOI: 10.35940/ijitee.L3915.1081219  [Google Scholar]
  16. Hendricks, V. F. (2006). Mainstream and formal epistemology. Cambridge University Press. DOI:10.5860/choice.44-1457 [Google Scholar]
  17. Hırça, N., Çalık, M. ve Akdeniz, F. (2008). Investigating grade 8 students’ conceptions of ‘energy’ and related concepts. Türk Fen Eğitimi Dergisi, 5(1), 77-89.  [Google Scholar]
  18. Higgins, S., Mercier, E., Burd, L., & Joyce‐Gibbons, A. (2012). Multi‐touch tables and collaborative learning. British Journal of Educational Technology, 43(6), 1041-1054. doi:10.1111/j.1467-8535.2011.01259.x  [Google Scholar] [Crossref] 
  19. Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty‐first century. Science education, 88(1), 28-54. [Google Scholar] [Crossref] 
  20. İşman, A., Sevinç, V. ve Altığ, E. (1998). Fen bilgisi öğretiminde eğitim teknolojilerinin uygulamaları. 2. Fen Bilgisi Öğretimi Konferansı, Karadeniz Teknik Üniversitesi, Trabzon. [Google Scholar]
  21. Jermann, P., Soller, A., & Muehlenbrock, M. (2001). From mirroring to guiding: A review of the state of art technology for supporting collaborative learning. In European Perspectives on Computer-Supported Collaborative Learning (No. CONF, pp. 324-331).  [Google Scholar]
  22. Kan, S. (2013). Fizik öğretiminde proje tabanlı ve probleme dayalı öğrenme uygulamalarının değerlendirilmesi. Yayımlanmamış Doktora Tezi, Karadeniz Teknik Üniversitesi, Trabzon.  [Google Scholar]
  23. Karacop, A. (2017). The Effects of Using Jigsaw Method Based on Cooperative Learning Model in the Undergraduate Science Laboratory Practices. Universal Journal of Educational Research, 5(3), 420-434. DOI: 10.13189/ujer.2017.050314  [Google Scholar]
  24. Keller, C., & Cernerud, L. (2002). Students’ perceptions of e‐learning in university education. Journal of Educational Media, 27(1-2), 55-67.  [Google Scholar] [Crossref] 
  25. Kilmer, M. & Khrehbiel, J.D. (2019).. The Physics Teacher 57(1), 21. DOI: [Google Scholar] [Crossref] 
  26. Kitchen, D., & McDougall, D. (1999). Collaborative learning on the Internet. Journal of Educational technology systems, 27(3), 245-258.  [Google Scholar] [Crossref] 
  27. Larusson, J. A., & Alterman, R. (2009). Wikis to support the “collaborative” part of collaborative learning. International Journal of Computer-Supported Collaborative Learning, 4(4), 371-402.  [Google Scholar]
  28. Lee, K., Tsai, P. S., Chai, C. S., & Koh, J. H. L. (2014). Students' perceptions of self‐directed learning and collaborative learning with and without technology. Journal of Computer Assisted Learning, 30(5), 425-437. doi: 10.1111/jcal.12055  [Google Scholar] [Crossref] 
  29. Linn, M. C., Slotta, J. D., & Baumgartner, E. (2000). Teaching high school science in the information age: A review of courses and technology for inquiry-based learning. Milken Family Foundation.  [Google Scholar]
  30. Lipponen, L. (2002). Exploring foundations for computer-supported collaborative learning.  [Google Scholar]
  31. Made, A. F., Hasan, A., Tuttle, S., & Tuttle, D. (2019). Less is more: assessment and student learning in computer science education. Journal of Computing Sciences in Colleges, 34(4), 142-148.  [Google Scholar]
  32. Mayer, R. E. (2019). Computer games in education. Annual review of psychology, 70, 531-549.  [Google Scholar] [Crossref] 
  33. MEB (2007). Orta öğretim 9. sınıf fizik dersi öğretim programı, Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı, Ankara.  [Google Scholar]
  34. MEB (2011). Orta öğretim 9. sınıf fizik dersi öğretim programı, Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı, Ankara.  [Google Scholar]
  35. MEB (2013). Orta öğretim fizik dersi öğretim programı, Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı, Ankara.  [Google Scholar]
  36. MEB (2018). Orta öğretim fizik dersi öğretim programı, Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı, Ankara.  [Google Scholar]
  37. Merriam, S. B. (2002). Introduction to qualitative research. Qualitative research in practice: Examples for discussion and analysis, 1(1), 1-17. [Google Scholar]
  38. Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. sage.  [Google Scholar]
  39. Miles, M. B., & Huberman, A. M. (2015). Nitel veri analizi: Genişletilmiş bir kaynak kitap (Çev. Ed. S. Akbaba-Altun & A. Ersoy). Ankara: Pegem Akademi. [Google Scholar]
  40. Milner-Bolotin, M., Kotlicki, A., & Rieger, G. (2007). Can students learn from lecture demonstrations. J Coll Sci Teach, 36, 45-49.  [Google Scholar]
  41. Milner-Bolotin, M., & Moll, R. (2008). Physics exam problems reconsidered: Using Logger Pro to evaluate student understanding of physics. The Physics Teacher, 46(8), 494-500.  [Google Scholar] [Crossref] 
  42. Mills, G. E. (2003). Action Research: A Guide For the Teachers Researcher. Upper Saddle River, NJ: Merrill/Prentice Hall.  [Google Scholar]
  43. Moss, C. M., & Brookhart, S. M. (2012). Learning targets: Helping students aim for understanding in today's lesson. ASCD. [Google Scholar]
  44. Namdar, B., & Salih, E. (2017). Fen Bilgisi Öğretmen Adaylarının Teknoloji Destekli Argümantasyona Yönelik Görüşleri. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 17(3), 1384-1410. [Google Scholar] [Crossref] 
  45. Oktaviyanti, D., & Pramudya, Y. (2019, November). Angular Velocity and Acceleration Using Logger Pro magnetic Sensor. In Journal of Physics: Conference Series (Vol. 1254, No. 1, p. 012068). IOP Publishing. doi:10.1088/1742-6596/1254/1/012068  [Google Scholar] [Crossref] 
  46. Okuda, Y., Bryson, E. O., DeMaria Jr, S., Jacobson, L., Quinones, J., Shen, B., & Levine, A. I. (2009). The utility of simulation in medical education: what is the evidence?. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine: A Journal of Translational and Personalized Medicine, 76(4), 330-343.  [Google Scholar] [Crossref] 
  47. Onwuegbuzie, A. J., & Leech, N. L. (2007). Validity and qualitative research: An oxymoron?. Quality & quantity, 41(2), 233-249. DOI 10.1007/s11135-006-9000-3 [Google Scholar]
  48. Ozuru, Y., Briner, S., Kurby, C. A., & McNamara, D. S. (2013). Comparing comprehension measured by multiple-choice and open-ended questions. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 67(3), 215. DOI: 10.1037/a0032918 [Google Scholar]
  49. Palaganas, E. C., Sanchez, M. C., Molintas, V. P., & Caricativo, R. D. (2017). Reflexivity in qualitative research: A journey of learning. Qualitative Report, 22(2). [Google Scholar] [Crossref] 
  50. Papadakis, S. (2018). The use of computer games in classroom environment. International Journal of Teaching and Case Studies, 9(1), 1-25. [Google Scholar] [Crossref] 
  51. Ramma, Y., Bholoa, A., Watts, M., & Nadal, P. S. (2018). Teaching and learning physics using technology: Making a case for the affective domain. Education Inquiry, 9(2), 210-236.  [Google Scholar] [Crossref] 
  52. Retnawati, H., Arlinwibowo, J., Wulandari, N. F., & Pradani, R. G. (2018). Teachers’ difficulties and strategies in physics teaching and learning that applying mathematics. Journal of Baltic Science Education, 17(1), 120.  [Google Scholar]
  53. Ring, E. A., Dare, E. A., Crotty, E. A., & Roehrig, G. H. (2017). The evolution of teacher conceptions of STEM education throughout an intensive professional development experience. Journal of Science Teacher Education, 28(5), 444-467. [Google Scholar] [Crossref] 
  54. Rogers, E. M. (1995). Diffusion of innovation. New York: Free Press. [Google Scholar]
  55. Russell, D. W. (1996). UCLA Loneliness Scale (Version 3): Reliability, validity, and factor structure. Journal of personality assessment, 66(1), 20-40. [Google Scholar] [Crossref] 
  56. Schmidt, C. (2004). The analysis of semi-structured interviews. A companion to qualitative research, 253, 258.  [Google Scholar]
  57. Schonlau, M., & Couper, M. P. (2016, August). Semi-automated categorization of open-ended questions. In Survey Research Methods (Vol. 10, No. 2, pp. 143-152). [Google Scholar] [Crossref] 
  58. Setiyani, A., Kristiyanto, W. H., & Rondonuwu, F. S. (2019). Development of Motion Learning Media and Energy Conservation Law Through Coaster Tracks Based on Logger Pro Analysis. Jurnal Pendidikan Fisika Indonesia, 15(1), 24-28. DOI: 10.15294/jpfi.v15i1.17253  [Google Scholar]
  59. Stuessy, C. L., Parrott, J. A. & Foster, A. S. (2003). Mathematics and Science Classroom Observation Profile System (M-SCOPS): Using Classroom Observation to Analyze the How and What of Mathematics. [Google Scholar]
  60. Sultan, N. (2010). Cloud computing for education: a new dawn?. International Journal of Information Management, 30(2), 109–116. doi:10.1016/j.ijinfomgt.2009.09.004 [Google Scholar] [Crossref] 
  61. Sunal, D. W., Shemwell, J. T., Harrell, J. W., & Sunal, C. S. (Eds.). (2019). Physics Teaching and Learning: Challenging the Paradigm. IAP. [Google Scholar]
  62. Supalo, C. A., Mallouk, T. E., Amorosi, C., Rankel, L., Wohlers, H. D., Roth, A., & Greenberg, A. (2007). Talking Tools to Assist Students Who Are Blind in Laboratory Courses. Journal of Science Education for Students with Disabilities, 12(1), 27-32.  [Google Scholar]
  63. Supalo, C. A., Mallouk, T. E., Dwyer, D., Eberhart, H. L., & Bunnag, N. W. (2014). Teacher training workshop for educators of students who are blind or low vision. Journal of Science Education for Students with Disabilities, 13(1), 3.  [Google Scholar]
  64. Van Leeuwen, A., & Janssen, J. (2019). A systematic review of teacher guidance during collaborative learning in primary and secondary education. Educational Research Review, 27, 71-89. [Google Scholar] [Crossref] 
  65. VCL (2013). Virtual Computing lab. 16.06.2019 [Google Scholar]
  66. Vogel, J. J., Vogel, D. S., Cannon-Bowers, J., Bowers, C. A., Muse, K., & Wright, M. (2006). Computer gaming and interactive simulations for learning: A meta-analysis. Journal of Educational Computing Research, 34(3), 229-243.  [Google Scholar] [Crossref] 
  67. Wang, C. Y., Wu, H. K., Lee, S. W. Y., Hwang, F. K., Chang, H. Y., Wu, Y. T., ... & Tsai, C. C. (2014). A review of research on technology-assisted school science laboratories. Journal of Educational Technology & Society, 17(2), 307-320.  [Google Scholar]
  68. Wang, F., Liu, Y., Lu, Y., Zhang, L., Ma, J., Wang, L., & Sun, W. (2018). High-sensitivity Fabry–Perot interferometer temperature sensor probe based on liquid crystal and the Vernier effect. Optics letters, 43(21), 5355-5358.  [Google Scholar] [Crossref] 
  69. Vernier (2021). Vernier Computer Interface Logger Pro, 18 January 2021.  [Google Scholar]
  70. Whittemore, R., Chase, S. K., & Mandle, C. L. (2001). Validity in qualitative research. Qualitative health research, 11(4), 522-537.  [Google Scholar] [Crossref] 
  71. Windschitl, M., & Andre, T. (1998). Using computer simulations to enhance conceptual change: The roles of constructivist instruction and student epistemological beliefs. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 35(2), 145-160.<145::AID-TEA5>3.0.CO;2-S [Google Scholar] [Crossref] 
  72. Windschitl, M., Thompson, J., & Braaten, M. (2020). Ambitious science teaching. Harvard Education Press. [Google Scholar]
  73. Yeh, H. Y., Tsai, Y. H., Tsai, C. C., & Chang, H. Y. (2019). Investigating students’ conceptions of technology-assisted science learning: a drawing analysis. Journal of Science Education and Technology, 28(4), 329-340.  [Google Scholar] [Crossref] 
  74. Yıldırım, A. ve Şimşek, H. (2008). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seçkin Yayıncılık. [Google Scholar]
  75. Yildirim, H. I., & Sensoy, O. (2018). Effect of Science Teaching Enriched with Technological Practices on Attitudes of Secondary School 7th Grade Students towards Science Course. Universal Journal of Educational Research, 6(5), 947-959. DOI: 10.13189/ujer.2018.060516  [Google Scholar]
  76. Zhang, G., Wu, X., Zhang, W., Li, S., Shi, J., Zuo, C., ... & Yu, B. (2019). High temperature Vernier probe utilizing photonic crystal fiber–based Fabry-Perot interferometers. Optics Express, 27(26), 37308-37317.  [Google Scholar] [Crossref] 
  77. Zhao, Y., Wang, P., Lv, R., & Liu, X. (2016). Highly sensitive airflow sensor based on Fabry–Perot interferometer and Vernier effect. Journal of Lightwave Technology, 34(23), 5351-5356.  [Google Scholar]
  78. Zhao, Y., Tong, R. J., Chen, M. Q., & Peng, Y. (2019). Relative humidity sensor based on Vernier effect with GQDs-PVA un-fully filled in hollow core fiber. Sensors and Actuators A: Physical, 285, 329-337.  [Google Scholar] [Crossref] 
  79. Zhonggen, Y. (2019). A meta-analysis of use of serious games in education over a decade. International Journal of Computer Games Technology, 2019.  [Google Scholar] [Crossref] 
  80. URL-1: Sunset on Mount Nemrut. (date of access: 17.10.2019) [Google Scholar]
  81. URL-2: Sunrise on Mount Nemrut, (date of access: 17.10.2019) [Google Scholar]