International Association of Educators   |  ISSN: 2834-7919   |  e-ISSN: 1554-5210

Original article | International Journal of Progressive Education 2019, Vol. 15(3) 13-27

The Effect of Engineering Design-Based Science Teaching on The Perceptions of Classroom Teacher Candidates Towards STEM Disciplines

Elçin Ayaz & Rabia Sarıkaya

pp. 13 - 27   |  DOI: https://doi.org/10.29329/ijpe.2019.193.2   |  Manu. Number: MANU-1902-01-0001

Published online: June 03, 2019  |   Number of Views: 410  |  Number of Download: 1100


Abstract

The aim of this study is to reveal the effect of the engineering design-based teaching process in primary school science course of classroom teacher canditates perceptions about the disciplines of STEM (Science, Technology, Engineering and Mathematic). The study, pre-posttest single-group experimental design was used. The study group consisted of 28 classroom teacher candidates studying  of  university in Ankara. The data collected by the "STEM Semantic Difference Scale" were used for normal and dependent groups t-test. Eventually, it was found that the engineering design-based teaching process had a positive and significant increase in the perceptions of the prospective teachers about science, engineering and career disciplines (p <0,05). Although there was a positive increase in the perception of mathematics and technology discipline, this increase was not statistically significant (p> 0.05). It was also observed that positive and meaningful changes (p <0.05) were observed in the perceptions of general STEM disciplines.

Keywords: STEM education, engineering design-based teaching process, classroom teacher canditates,experimental study, stem discipline perceptions


How to Cite this Article?

APA 6th edition
Ayaz, E. & Sarikaya, R. (2019). The Effect of Engineering Design-Based Science Teaching on The Perceptions of Classroom Teacher Candidates Towards STEM Disciplines . International Journal of Progressive Education, 15(3), 13-27. doi: 10.29329/ijpe.2019.193.2

Harvard
Ayaz, E. and Sarikaya, R. (2019). The Effect of Engineering Design-Based Science Teaching on The Perceptions of Classroom Teacher Candidates Towards STEM Disciplines . International Journal of Progressive Education, 15(3), pp. 13-27.

Chicago 16th edition
Ayaz, Elcin and Rabia Sarikaya (2019). "The Effect of Engineering Design-Based Science Teaching on The Perceptions of Classroom Teacher Candidates Towards STEM Disciplines ". International Journal of Progressive Education 15 (3):13-27. doi:10.29329/ijpe.2019.193.2.

References
  1. Adams, M. (2015). A cultural historical theoretical perspective of discourse and design in the science classroom. Cultural Studies of Science Education, 10(2), 329-338. [Google Scholar]
  2. Akgündüz, D., Aydeniz, M., Çakmakçı, G., Çavaş, B., Çorlu, M. S., Öner, T., & Özdemir, S. (2015). STEM eğitimi türkiye raporu [STEM education turkey report]. İstanbul: Scala Printing. [Google Scholar]
  3. Altaş, S. (2018). STEM eğitimi yaklaşımının sınıf öğretmeni adaylarının mühendislik tasarım süreçlerine, mühendislik ve teknoloji algılarına etkisinin incelenmesi [Investigation of the effects of STEM education approach on the perceptions of classroom teaching candidates about engineering design processes and about engineering and technology]  (unpublished master thesis). Mus Alparslan University, Mus. [Google Scholar]
  4. Altunel M., (2018). STEM eğitimi ve türkiye:  fırsatlar ve riskler [STEM education and turkey: opportunities and risks], Seta Perspective, 207, 1-7.   [Google Scholar]
  5. Bethke Wendell, K., & Rogers, C. (2013). Engineering design-based science, science content performance, and science attitudes in elementary school. Journal of Engineering Education, 102(4), 513-540. [Google Scholar]
  6. Blackley, S., & Howell, J. (2015). A STEM narrative: 15 years in the making. Australian Journal of Teacher Education, 40(7), 8. [Google Scholar]
  7. Bozkurt Altan, E., Yamak, H.& Buluş Kırıkkaya, E. (2016). A proposal of the STEM education for teacher training: design based science education. Trakya University Faculty of Education Journal, 6(2), 212-232. [Google Scholar]
  8. Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11. [Google Scholar]
  9. Brown, C., Taylor, C., & Ponambalum, L. (2016). Using design-based research to improve the lesson study approach to professional development in camden (London). London Review Of Education, 14(2), 4-24. [Google Scholar]
  10. Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, Co: BSCS, 5, 88-98..  [Google Scholar]
  11. Çepni, S., Ormancı, Ü. (2018). Geleceğin dünyası [The future world], S.Çepni (Ed.), Kuramdan uygulamaya STEM+A+E eğitimi [From theory to practice STEM + A + E training] (s-1-37), Ankara: Pegem Akademi Publishing. [Google Scholar]
  12. Cohen J. The analysis of variance. In Statistical Power Analysis for the Behavioral Sciences (second ed.). Lawrence Erlbaum Associates. 1988, 274-87. [Google Scholar]
  13. Corlu, M. S. (2014). FeTeMM eğitimi makale çağrı mektubu [Call for manuscripts on STEM education]. Turkish Journal of Education, 3(1), 4-10. [Google Scholar]
  14. Corlu, M. S., Capraro, R. M., & Capraro, M. M. (2014). Introducing STEM education: Implications for educating our teachers in the age of innovation. Education and Science, 39(171), 74-85. [Google Scholar]
  15. Ercan, S. (2014). Fen Eğitiminde Mühendislik Uygulamalarının Kullanımı: Tasarım Temelli Fen Eğitimi [The usage of engineering practices in science education: Design based science learning](doctoral thesıs).Marmara University, Istanbul. [Google Scholar]
  16. Eryaman, M. Y. (2007). From reflective practice to practical wisdom: Toward a post-foundational teacher education. International Journal of Progressive Education, 3(1), 87-107. [Google Scholar]
  17. Gökbayrak, S., & Karışan, D. (2017). STEM temelli laboratuvar etkinliklerinin fen bilgisi öğretmen adaylarının STEM farkındalıklarına etkisinin incelenmesi [Investigating the effect of STEM based laboratory activities on preservice science teacher’s STEM awareness]. Journal of Human Sciences, 14(4), 4275-4288. [Google Scholar]
  18. Guzey, S. S., Moore, T. J., & Harwell, M. (2016). Building up STEM: An analysis of teacher-developed engineering design-based STEM integration curricular materials. Journal of Pre-College Engineering Education Research (J-PEER), 6(1), 2. [Google Scholar]
  19. Gülhan, F., & Şahin, F. (2016). The effects of science-technology-engineering-math (STEM) integration on 5th grade students’ perceptions and attitudes towards these areas [Fen-teknoloji-mühendislik-matematik entegrasyonunun (STEM) 5. sınıf öğrencilerinin bu alanlarla ilgili algı ve tutumlarına etkisi]. Journal of Human Sciences, 13(1), 602-620. [Google Scholar]
  20. Gülhan, F., & Şahin, F. (2016). Fen-teknoloji-mühendislik-matematik entegrasyonunun (STEM) 5. sınıf öğrencilerinin kavramsal anlamalarına ve mesleklerle ilgili görüşlerine etkisi [The effect of science-technology-engineering-mathematics integration (STEM) on the conceptual understanding of 5th grade students and their views on professions]. Pegem Atıf Index, 283-302. [Google Scholar]
  21. Hacıoğlu, Y., Yamak, H., & kavak, n. (2016). Mühendislik tasarım temelli fen eğitimi ile ilgili öğretmen görüşleri [Teachers’ opinions regarding engineering design based science education]. Bartın University Journal of Education, 5(3), 807. [Google Scholar]
  22. Havice, W., Havice, P., Waugaman, C., & Walker, K. (2018). Evaluating the effectiveness of integrative STEM education: Teacher and administrator professional development. Journal of Technology Education, 29(2), 73-90. [Google Scholar]
  23. Kaptan, F. & Kusakcı, F. (2002). Fen öğretiminde beyin fırtınası tekniğinin öğrenci yaratıcılığına etkisi [The effect of brainstorming technique on student creativity in science teaching]. V. National Science and Mathematics Education Congress Proceedings Book (S. 197-202). Odtü: Ankara. [Google Scholar]
  24. Karahan, E., Canbazoglu Bilici, S., & Unal, A. (2015). Integration of media design processes in science, technology, engineering, and mathematics (STEM) education. Eurasian Journal of Educational Research, 60, 221-240.  [Google Scholar]
  25. Karasar, N. (2015). Scientific method. Ankara: Nobel Publishing. [Google Scholar]
  26. Karataş, F-Ö. (2018). Eğitimde geleneksel anlayışa yeni bir s(i)tem [A new s (i) tem in traditional education in education], S.Çepni, kuramdan uygulamaya STEM+A+E eğitimi [From theory to practice STEM + A+ E training], (s-54-63) Ankara: Pegem Akademi Publishing. [Google Scholar]
  27. Kızılay, A. G. E. (2011). STEM semantik farklılık ölçeği’nin türkçeye uyarlanması [The adaptation of STEM semantics survey into turkish], The Journal of Academic Social Science Studies, 58 , 131-144. [Google Scholar]
  28. Kloser, M., Wilsey, M., Twohy, K. E., Immonen, A. D., & Navotas, A. C. (2018). “We do STEM”: Unsettled conceptions of STEM education in middle school STEM classrooms. School Science and Mathematics, 118(8), 335-347. [Google Scholar]
  29. Knezek, G., Christensen, R., Tyler-Wood, T., & Periathiruvadi, S. (2013). Impact of environmental power monitoring activities on middle school student perceptions of STEM. Science Education International, 24(1), 98-123. [Google Scholar]
  30. Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., ... & Ryan, M. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design (tm) into practice. The journal of the learning sciences, 12(4), 495-547. [Google Scholar]
  31. Marulcu, I., & Sungur, K. (2012). Fen bilgisi öğretmen adaylarının mühendis ve mühendislik algılarının ve yöntem olarak mühendislik dizayna bakış açılarının incelenmesi [Investigating pre-service science teachers’ perspectives on engineers, engineering and engineering design as context]. Afyon Kocatepe University Journal of Science, 12, 13-23. [Google Scholar]
  32. Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A., Smith, K. A., & Stohlmann, M. S. (2014). A framework for quality K-12 engineering education: Research and development. Journal of Pre-College Engineering Education Research (J-PEER), 4(1), 2. [Google Scholar]
  33. Pallant, J. (2016). SPSS kullanma kılavuzu SPSS ile adım adım veri analizi [SPSS manuel a step by guide to data analysis using IBM SPS], (Balcı, S., Ahi, B. Trns Ed.). Ankara: Anı Publishing. [Google Scholar]
  34. National Research Council [NRC]. (2012). A Framework for k-12 science education: practices, crosscutting concepts, and core ideas. Washington DC: The National Academic Press. [Google Scholar]
  35.    Öztürk, Ş. (2002). Sosyal bilimler için veri analizi el kitabı [Data analysis for social sciences handbook],(s-42), (22. Baskı).Ankara: Pegem Akademi Publishing. [Google Scholar]
  36. Pekbay, C. (2017). Fen teknoloji mühendislik ve matematik etkinliklerinin ortaokul öğrencileri üzerindeki etkileri [Effects of science technology engineering and mathematics activities on middle school students], (doctoral thesis), Haccetepe University, Ankara. [Google Scholar]
  37.  Radloff, J., & Guzey, S. (2017). Investigating changes in preservice teachers’ conceptions of STEM education following video analysis and reflection. School Science and Mathematics, 117(3-4), 158-167. [Google Scholar]
  38. Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education: Innovations and Research, 5(3/4), 17. [Google Scholar]
  39. Sanders, M. (2009). STEM, STEM education, stemmania. The technology teacher, The Technology Teacher, 68(4), 20-26. [Google Scholar]
  40. Sumen, O. O., & Calisici, H. (2016). The associating abilities of pre-service teachers science education program acquisitions with engineering according to STEM education. Journal of Education and Practice, 7(33), 117-123. [Google Scholar]
  41. Sungur Gül, K. & Marulcu, İ. (2014). Yöntem olarak mühendislik-dizayna ve ders materyali olarak legolara öğretmen ile öğretmen adaylarının bakış açılarının incelenmesi [Investigation of ın service and pre service science teachers’ perspectives about engıneerıng-desıgn as an ınstructional method and legos as an ınstructıonal material], International Periodical for The Languages, Literature and History of Turkish or Turkic, 9(2), 761-786. [Google Scholar]
  42. Tyler-Wood, T., Knezek, G. & Christensen, R. STEM (2010). Instruments for assessing inte-rest in STEM content and careers. Jl. Of Technology and Teacher Education, 18/2, 341-363. [Google Scholar]
  43. Wendell, K. B., Connolly, K. G., Wright, C. G., Jarvin, L., Rogers, C., Barnett, M., & Marulcu, I. (2010). Incorporating engineering design into elementary school science curricula. American Society For Engineering Education Annual Conference & Exposition, Louisville, Ky.  [Google Scholar]
  44. Wendell, B., & Rogers, C. (2013). Engineering design-based science, science content performance, and science attitudes in elementary school. Journal of Engineering Education, 102(4), 513–540. [Google Scholar]
  45. Yamak, H., Bulut, N., & Dündar, S. (2014). 5. Sınıf öğrencilerinin bilimsel süreç becerileri ile fene karşı tutumlarına FeTeMM etkinliklerin etkisi [The impact of STEM activities on 5th grade students’ scientific process skills and their attitudes towards science], Gazi University Journal of Gazi Faculty of Education, 34(2). [Google Scholar]
  46. Yıldırım, B., & Selvi, M. (2017). STEM uygulamaları ve tam öğrenmenin etkileri üzerine deneysel bir çalışma [An experimental research on effects of STEM applications and mastery learning], Journal of Theory and Practice in Education, 13(2), 183-210. [Google Scholar]
  47. Yıldırım, P. (2017). Fen, teknoloji, mühendislik ve matematik (STEM) entegrasyonuna ilişkin nitel bir çalışma[A qualitative study on integration of science, technology, engineering, and mathematics (STEM)]. Atatürk Kazım Karabekir University, Journal of Faculty of Education, (35), 31-55. [Google Scholar]