International Association of Educators   |  ISSN: 2834-7919   |  e-ISSN: 1554-5210

Original article | International Journal of Progressive Education 2019, Vol. 15(6) 51-65

A Research on Visual Learning Representations of Primary and Secondary Science Textbooks in Turkey

Tufan Inaltekin & Volkan Goksu

pp. 51 - 65   |  DOI: https://doi.org/10.29329/ijpe.2019.215.4   |  Manu. Number: MANU-1911-07-0002

Published online: December 08, 2019  |   Number of Views: 301  |  Number of Download: 870


Abstract

The aim of this study is to analyze the types of visual representations in primary and secondary science textbooks in Turkey. The sample of the research constitutes six textbooks prepared by private publishers for primary and secondary science courses (3rd-8th Grade) in Turkey in 2018-2019 academic year. Document analysis design, which is one of the qualitative research methods, is used in this study. The data are analyzed with descriptive analysis method by using the Moline (1995) “Visual Representation Classification Model”. The results of the study show that simple diagrams are used more frequently than other types of visual representations in all class levels and units in science textbooks. It is understood that synthetic diagrams are more preferable in the 6th, 7th and 8th grades’ science textbooks than in other grade levels, whereas analytical diagrams are more preferable in the sixth grade’s science textbooks than the other grade levels. Visuals such as graphics and maps are determined to be little used in all class levels and units, on the other hand table visuals are frequently used in all class levels. In addition, it is determined that the timeline as the visual representation is used in a few units only in the 7th grade’s book. The results of this study show that visual learning representations in primary and secondary school textbooks need to be rearranged in terms of diversity and distribution in class level and units.

Keywords: Visual learning representations, Science textbooks, Document analysis


How to Cite this Article?

APA 6th edition
Inaltekin, T. & Goksu, V. (2019). A Research on Visual Learning Representations of Primary and Secondary Science Textbooks in Turkey . International Journal of Progressive Education, 15(6), 51-65. doi: 10.29329/ijpe.2019.215.4

Harvard
Inaltekin, T. and Goksu, V. (2019). A Research on Visual Learning Representations of Primary and Secondary Science Textbooks in Turkey . International Journal of Progressive Education, 15(6), pp. 51-65.

Chicago 16th edition
Inaltekin, Tufan and Volkan Goksu (2019). "A Research on Visual Learning Representations of Primary and Secondary Science Textbooks in Turkey ". International Journal of Progressive Education 15 (6):51-65. doi:10.29329/ijpe.2019.215.4.

References
  1. Abd-El-Khalick, F., Myers, J. Y., Summers, R., Brunner, J., Waight, N., Wahbeh, N., Zeineddin, A. A. and Belarmino, J. (2017), A longitudinal analysis of the extent and manner of representations of nature of science in U.S. high school biology and physics textbooks. Journal of Research in Science Teaching, 54(1), 82–120. [Google Scholar]
  2. Akçay, B. & Akçay, H. (2018). Descriptive analysis of diagrammatic representations of Turkish middle school science textbooks. The Eurasia Proceedings of Educational & Social Sciences (EPESS), 9, 193-199. [Google Scholar]
  3. Bas, T., & Akturan, U. (2008). Nitel araştırma yöntemleri NVivo 7.0 ile nitel veri analizi. (1th. Ed.). Ankara: Seckin Yayincilik. [Google Scholar]
  4. Binns, I. C., & Bell, R. L. (2015). Representation of scientific methodology in secondary science textbooks. Science & Education, 24, 913–936. [Google Scholar]
  5. Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27–40. [Google Scholar]
  6. Büyüköztürk, Ş., Kılıç-Çakmak E., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2012). Bilimsel araştırma yöntemleri (11th ed.). Ankara: Pegem A Yayıncılık. [Google Scholar]
  7. Calik, M. & Kaya, E. (2012). Fen ve teknoloji ders kitaplarinda ve ogretim programindaki benzetmelerin incelenmesi. Ilkögretim Online, 11(4), 856-868. [Google Scholar]
  8. Carney, R., & Levin, J. (2002). Pictorial illustrations still improve students’ learning from text. Educational Psychology Review, 14(1), 5–26. [Google Scholar]
  9. Cheng, M. M. W., & Gilbert, J. K. (2014). Students’ visualization of metallic bonding and the malleability of metals. International Journal of Science Education, 36(8), 1373–1407. [Google Scholar]
  10. Chiappetta E. L., Ganesh T. G., Lee Y. H., & Phillips M. C., (2006), Examination of science textbook analysis research conducted on textbooks published over the past 100 years in the United States. Proceedings from annual meeting of the National Association for Research in Science Teaching, San Francisco, CA. [Google Scholar]
  11. Coleman, J. M., & Dantzler, J. A. (2016). The frequency and type of graphical representations in science trade books for children. Journal of Visual Literacy, 35(1), 24-41. [Google Scholar]
  12. Coleman, J. M., McTigue, E. M., & Smolkin, L. B. (2011). Elementary teachers’ use of graphical represenatations in science teaching. Journal of Science Teacher Education, 22(7), 613-643. [Google Scholar]
  13. Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073–1091. [Google Scholar]
  14. Cox, S. (2005). Intention and meaning in young children’s drawing. International Journal of Art & Design Education, 24(2), 115–125. [Google Scholar]
  15. Cromley, J. G., Bergey, B. W., Fitzhugh, S., Newcombe, N., Wills, T. W., Shipley, T. F., & Tanaka, J. C. (2013). Effects of three diagram instruction methods on transfer of diagram comprehension skills: The critical role of inference while learning. Learning and Instruction, 26, 45-58. [Google Scholar]
  16. Danish, J. A., & Enyedy, N. (2007). Negotiated representational mediators: How young children decide what to include in their science representations. Science Education, 91(1), 1-35. [Google Scholar]
  17. Doblin, J. (1980). A structure of visible language. In P.A. Kolers, M.E. Wrolstad, & H. Bouma, (Eds.), Processing of visible language (pp. 89–111). New York: Plenum Press. [Google Scholar]
  18. Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (2007). Taking science to school: Learningand teaching science in grades K-8. Washington, DC: National Academies Press. [Google Scholar]
  19. Gkitzia, V., Salta, K., & Tzougraki, C. (2011). Development and application of suitable criteria for the evaluation of chemical representations in school textbooks. Chemistry Education Research and Practice, 12, 5–14. [Google Scholar]
  20. Guo, D., Wright, K. L., & McTigue, E. M. (2018). A content analysis of visuals in elementary school textbooks. The Elementary School Journal, 119(2), 244–269. [Google Scholar]
  21. Guo, D., Zhang, S. McTigue, E. M., & Wright, K. L. (April, 2017). Do you get the picture?: A meta-analysis of the effects of graphics on reading comprehension. Presented at the 2017. American Educational Research Association Annual Conference, San Antonio, TX. [Google Scholar]
  22. Irving K. E., Savaşcı-Açıkalın F., & Wang T. L. (2006). Multiple representations of the particulate nature of matter.  Paper presented at the annual meeting for the National Association for Research in Science Teaching International Conference, San Francisco, CA. [Google Scholar]
  23. Kapıcı, H. Ö., & Savaşçı-Açıkalın, F. (2015). Examination of visuals about the particulate nature of matter in Turkish middle school science textbooks. Chemistry Education Research and Practice, 16(3), 518-536. [Google Scholar]
  24. Khine, M. (Ed.). (2013). Critical analysis of science textbooks: Evaluating instructional effectiveness. New York/London: Springer [Google Scholar]
  25. Khine, M. S., & Liu, Y. (2017). Descriptive analysis of the graphic representations of science textbooks. European Jourrnal of STEM Education, 2(3). doi.org/10.20897/ejsteme/81285. [Google Scholar]
  26. Kress, G., & van Leeuwen, T. (1996). Reading images: The grammar of the visual design. London and New York: Routledge. [Google Scholar]
  27. Kulm, G., Roseman, J., & Treistman, M. (1999). A benchmarks-based approach to textbook evaluation. Science Books & Films, 3(5), 147–153. [Google Scholar]
  28. Lee V. R. (2010). Adaptations and continuities in the use and design of visual representations in US middle school science textbooks. International Journal of Science Education, 32(8), 1099–1126. [Google Scholar]
  29. Lee, T. D., & Jones, M. G. (2017). Elementary teachers’ selection and use of visual models. Journal of Science Education and Technology, 27(1), 1-29. [Google Scholar]
  30. Lemoni, R., Lefkaditou, A., Stamou, A., G., Schizas, D., & Stamou, G., P. (2013). Views of nature and the human-nature relations: An analysis of the visual syntax of pictures about the environment in Greek primary school textbook-diachronic considerations. Research in Science Education, 43, 17-140. [Google Scholar]
  31. Liu, Y., & Khine, M. S. (2016). Content analysis of the diagrammatic representations of primary science textbooks. Eurasia Journal of Mathematics, Science & Technology Education, 12(8), 1937–1951. [Google Scholar]
  32. McTigue, E. M. (2009). Does multimedia theory extend to middle school students? Contemporary Educational Psychology, 34, 143–153.  [Google Scholar]
  33. Miles M. B., & Huberman, A. M.(1994). Qualitative data analysis: An expanded sourcebook. (2nd ed). Thousand Oaks: Sage.  [Google Scholar]
  34. Moline, S. (1995). I see what you mean. York, ME: Stenhouse Publishing. [Google Scholar]
  35. Moline, S. (2011). I see what you mean: Visual literacy K-8. Stenhouse Publishers. [Google Scholar]
  36. Morgil I. F., & Yılmaz, A. (1999). Lise x. sınıf, kimya ıı ders kitaplarının öğretmen ve öğrenci görüşleri açısından değerlendirilmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1(1), 26-41. [Google Scholar]
  37. Nakiboğlu C., (2009). Deneyimli kimya öğretmenlerinin ortaöğretim kimya ders kitaplarını kullanımlarının incelenmesi.  Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 10(1), 1–10. [Google Scholar]
  38. Nakiboğlu, C., & Çamurcu, M. (2014). Graphic organizers and examining of their usage in high school physics textbooks. Bolu Abant İzzet Baysal University Journal of Faculty of Education, 14(1), 51-74. [Google Scholar]
  39. Nakiboğlu, C., & Yildirim, M. (2018). Examining of Graphic Organizers’ Usage in Secondary School Science Textbooks. Journal of Theoretical Educational Science, 1-23. [Google Scholar]
  40. Next generation science standards (NGSS) Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press. [Google Scholar]
  41. Niaz, M., Klassen, S., McMillan, B., & Metz, D. (2010). Reconstruction of the history of the photoelectric effect and its implications for general physics textbooks. Science Education, 94, 903–931. [Google Scholar]
  42. Orgill, M. (2013). How effective is the use of analogies in science textbooks. In M. S. Khine (Ed.), Critical Analysis of Science Textbooks (pp. 79-99). Dordrecht: Springer. [Google Scholar]
  43. Patton, Q. P. (2002). Two decades of developments in qualitative inquiry: A personal, experiential perspective. Qualitative Social Work, 1(3), 261–283. [Google Scholar]
  44. Pettersson, R. (2002). Information design: an introduction. Amsterdam: John Benjamins. [Google Scholar]
  45. Pinto, R. (2002). Introduction to science teacher training in an information society (STTIS) project. International Journal of Science Education, 24(3), 227-234. [Google Scholar]
  46. Postigo, Y., & López-Manjón, A. (2018). Images in biology: are instructional criteria used in textbook image design? International Journal of Science Education, 1–20. [Google Scholar]
  47. Pozzer L. L., & Roth, W. (2003), Prevalence, function and structure of photographs in high school biology textbooks. Journal of Research in Science Teaching, 40(10), 1089–1114. [Google Scholar]
  48. Preston, C. (2016). Effect of a science diagram on primary students’ understanding about magnets. Research Science Education, 46, 857–877. [Google Scholar]
  49. Preston, C. M. (2017). Effect of a diagram on primary students’ understanding about electric circuits. Research in Science Education, 1-24. doi:10.1007/s11165-017-9662-y. [Google Scholar] [Crossref] 
  50. Rapp D., (2005), Mental models: theoretical issues for visualizations in science education, in Gilbert J. K. (ed.), Visualization in Science Education (pp. 43–60). Netherlands: Springer. [Google Scholar]
  51. Roberts, K. L., Norman, R. R., Duke, N. K., Morsink, P., Martin, N. M., & Knight, J. A. (2013). Diagrams, timelines, and tables—Oh, my! Fostering graphical literacy. Reading Teacher, 67, 12–24. [Google Scholar]
  52. Rybarczyk, B. (2011). Visual literacy in biology: a comparison of visual representations in textbooks and journal articles. Journal of College Science Teaching, 41(1), 106. [Google Scholar]
  53. Quasim, S. H. and Pandey, S.S. (2017). Content analysis of diagrammatic representations in upper primary science textbooks. International Journal of Research, 5(7), 474-479. [Google Scholar]
  54. Sen, A. Z., & Nakiboglu, C. (2012). Analyze of high school chemistry textbooks in terms of science process skills. Journal of Kırşehir Education Faculty (KEFAD), 13(3), 47-65. [Google Scholar]
  55. Schizas, D., Papatheodorou, E., & Stamou, G. (2018). Transforming “ecosystem” from a scientific concept into a teachable topic: philosophy and history of ecology informs science textbook analysis. Research in Science Education, 48(2), 267–300. [Google Scholar]
  56. Shehab, S. S., & BouJaoude, S. (2017).  Analysis of the chemical representations in secondary Lebanese chemistry textbooks. International Journal of Science and Mathematics Education, 15, 797–816. [Google Scholar]
  57. Stern, L., & Roseman, J. E. (2004). Can middle-school science textbooks help students learn important ideas? Findings from project 2061’s curriculum evaluation study: Life science. Journal of Research in Science Teaching, 41, 538–658. [Google Scholar]
  58. Şimşek, H. & Yıldırım, A. (2013). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayınevi. [Google Scholar]
  59. Taş, U. E., Arıcı, Ö., Ozarkan, H. B., & Özgürlük, B. (2016). PISA 2015 Ulusal Raporu. Ankara: MEB. [Google Scholar]
  60. Tekbiyik, A. (2006). Lise 1 fizik ders kitabının okunabilirliği ve hedef yaş düzeyine uygunluğu. Kastamonu Eğitim Dergisi, 14, 441–446. [Google Scholar]
  61. Tippett, C. D. (2016). What recent research on diagrams suggests about learning with rather than learning from visula representations in science. International Journal of Science Education, 38(5), 725-746. [Google Scholar]
  62. Ucar, C., & Somuncuoglu-Ozerbas, D. (2017). Ortaokul 5. sınıf fen bilimleri ders kitabının görsel tasarım ilkeleri açısından değerlendirilmesi. Kastamonu Eğitim Dergisi, 25(4), 1373-1388. [Google Scholar]
  63. Vekeri, I. (2002). What is the value of graphical displays? Educational Psychology, 14(3), 261-312. [Google Scholar]
  64. Waldrip, B., & Prain, V. (2012). Learning from and through representations in science. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 145–155). Dordrecht, The Netherlands: Springer. doi:10.1007/978-1-4020-9041-7_12 [Google Scholar] [Crossref] 
  65. Wilson, R. E., & Bradbury, L. U. (2016). The pedagogical potential of drawing and writing in a primary science multimodal unit. International Journal of Science Education, 38(17), 2621–2641.  [Google Scholar]