International Association of Educators   |  ISSN: 1554-5210

Original article | International Journal of Progressive Education 2021, Vol. 17(6) 183-200

The Effects of Scientific Argumentation on High School Students’ Critical Thinking Skills

Nejla Gültepe & Ziya Kılıç

pp. 183 - 200   |  DOI: https://doi.org/10.29329/ijpe.2021.382.13   |  Manu. Number: MANU-2105-04-0004.R1

Published online: December 03, 2021  |   Number of Views: 46  |  Number of Download: 172


Abstract

One needs higher order thinking skills in positioning perspectives for any kinds of problems that affect one’s view of life in order to develop a fundamental scientific understanding. For this reason, science teaching requires thinking skills instruction to be included in classes. This study aimed observing the effects of student-centered activities,  which were formed through scientific argument centered teaching method, on the critical thinking development of students, comparing it with those of traditional approach in chemistry classes. The research was conducted in two 11th grade classes of a high school in the city of Çankırı in Turkey. Classes were carried out with the teaching approach based on scientific argumentation in the experiment group with 17 students and with the conventional teaching approach in the control group with 17 students. The study lasted for 29 weeks with 11th grade students in two groups. In the experimental group, argumentation-centered instruction activities, which were based on Toulmin’s argument model, were conducted. Data were obtained through Watson Glasser Critical Thinking Scale and achievement tests named Achievement Test 1: Reaction Rate, Achievement Test2: Chemical Equilibrium, Achievement Test 3: Solubility Product, Achievement Test 4: Equilibrium in Acid-Base Solutions were applied at the beginning and end of the intstructions as pre-test and post-test. Wilcoxon test and Mann Whitney U test were used to analyze the data quantitaviely. With regard to the results, critical thinking skills of experimental group and control group students made progress but there was a statistically significant difference between the two groups. Also, when students’ answers in achievement tests are analyzed qualitatively in terms of critical thinking subskills, it can be seen that all critical thinking sub skills of the experimental group students have developed more than the control group.

Keywords: Scientific Argumentation, Critical Thinking, Science Education, High School


How to Cite this Article?

APA 6th edition
Gultepe, N. & Kilic, Z. (2021). The Effects of Scientific Argumentation on High School Students’ Critical Thinking Skills . International Journal of Progressive Education, 17(6), 183-200. doi: 10.29329/ijpe.2021.382.13

Harvard
Gultepe, N. and Kilic, Z. (2021). The Effects of Scientific Argumentation on High School Students’ Critical Thinking Skills . International Journal of Progressive Education, 17(6), pp. 183-200.

Chicago 16th edition
Gultepe, Nejla and Ziya Kilic (2021). "The Effects of Scientific Argumentation on High School Students’ Critical Thinking Skills ". International Journal of Progressive Education 17 (6):183-200. doi:10.29329/ijpe.2021.382.13.

References
  1. Aslan, S. (2010). Ortaöğretim 10. Sınıf Öğrencilerinin Üst Bilimsel Süreç ve Eleştirel Düşünme Becerilerinin Geliştirilmesine Bilimsel Tartışma Odaklı Öğretim Yaklaşımının Etkisi (Publication Code: 279586). [PhD Thesis, Gazi University/Instute of Educational Sciences] Ankara.  [Google Scholar]
  2. Ateş, S. (2004). The Effects of Inquiry-based Instruction on the Development of Integrated Science Process Skills in Trainee Primary School Teachers with Different Piagetian Developmental Levels, Gazi Eğitim Fakültesi Dergisi, 24(3), 275-290. [Google Scholar]
  3. Beaumont-Walters, Y. & Soyibo K. (2001). An Analysis of High School Students’ Performance on Five Integrated Science Process Skills. Research in Science and Technological Education, 19(2), 133-145. https://doi.org/10.1080/02635140120087687. [Google Scholar] [Crossref] 
  4. Bricker, L. A. & Bell, P. (2008). Conceptualizations of Argumentation From Science Studies and The Learning Sciences and Their Implications for the Practices of Science Education. Science Education, 92 (3), 473–498. [Google Scholar]
  5. Brown, S. (2009). On the Other Side of the Barrier is Thinking. Acta Dicatica Napocensia, 2(3), 1-8. https://doi.org/10.1002/sce.20278. [Google Scholar] [Crossref] 
  6. Cavallo, A. M. L. (1996). Meaningful Learning, Reasoning Ability, and Students’ Understanding and Problem Solving of Topics in Genetics, Journal of Research in Science Teaching, 33(6),  625–656. https://doi.org/10.1002/(SICI)1098-2736(199608)33:6<625::AID-TEA3>3.0.CO;2-Q. [Google Scholar] [Crossref] 
  7. Cho, K. & Jonassen, D. H. (2002). The Effects of Argumentation Scaffolds on Argumentation and Problem Solving. Educational Technology Research and Development, 50 (3), 5–22.  https://doi.org/10.1007/BF02505022. [Google Scholar] [Crossref] 
  8. Creswell, J. W. & Miller, D. L. (2000) Determining Validity in Qualitative Inquiry. Theory into Practice, 39, 124-130. http://dx.doi.org/10.1207/s15430421tip3903_2. [Google Scholar]
  9. Cakmakci, G., Donnelly, J & Leach, J. (2005). A cross-sectional study of the understanding of the relationships between concentration and reaction rate among Turkish secondary and undergraduate students. In K. Boersma & O. de Jong & H. Eijkelhof & M. Goedhart (Eds.), Research and the Quality of Science Education. (pp. 483-497). Dordrecht: Springer. [Google Scholar]
  10. Doğanay, A. & Ünal, F. (2006). Eleştirel Düşünmenin Öğretimi. A. Şimşek (Ed.), İçerik Türlerine Dayalı Öğretim (s: 209-264). Ankara: Nobel Yayınevi. [Google Scholar]
  11. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the Norms of Scientific Argumentation in Classrooms. Science Education, 84(3), 287-312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A. [Google Scholar] [Crossref] 
  12. Duschl, R. A. & Osborne, J. (2002). Supporting and Promoting Argumentation Discourse in Science Education. Studies in Science Education, 38, 39–72. https://doi.org/10.1080/03057260208560187. [Google Scholar] [Crossref] 
  13. Erduran, S. & Jiménez-Aleixandre, M. P. (2007). Argumentation in Science Education: Perspectives from Classroom-Based Research. Springer. [Google Scholar]
  14. Erduran, S., Ardaç, D. & Yakmacı-Güzel, B. (2006). Learning To Teach Argumentation; Case Studies of Pre-Service Secondary Science Teachers, Eurasia Journal of Mathematics, Science and Technology Education, 2(2), 1–14. https://doi.org/10.12973/ejmste/75442. [Google Scholar] [Crossref] 
  15. Gábor Á. Z. (2007). Conflicting Agendas: Critical Thinking versus Science Education in the International Baccalaureate Theory of Knowledge Course, Science & Education, 16(2), 167-196. [Google Scholar]
  16. Ganguly, I. (1995). Scientific Thinking is in The Minds Eye. Selected Readings From The International Visual Literacy Association, 27th, Chicago, IL, 18–22. [Google Scholar]
  17. Grabinger, R. S. & Dunlap, J. C. (1995). Rich Environments for Active Learning: a Definition. Research in Learning Technology, 3(2), 5-34. https://doi.org/10.3402/rlt.v3i2.9606. [Google Scholar] [Crossref] 
  18. Güven, M. & Kürüm, D. (2004). Öğrenme Stilleri ve Eleştirel Düşünme Arasındaki İlişkiye Genel Bakış. XIII. Ulusal Eğitim Bilimleri Kurultayı, İnönü Üniversitesi, Eğitim Fakültesi, Malatya. [Google Scholar]
  19. Hasnunidah, N., Susilo, H., Irawati, M. & Suwono, H. (2020). The Contribution of Argumentation and Critical Thinking Skills on Students’ Concept Understanding in Different Learning Models. Journal of University Teaching & Learning Practice, 17(1), 6, 1-11. https://ro.uow.edu.au/jutlp/vol17/iss1/6. [Google Scholar]
  20. Haynes, T. & Bailey, G. (2003). Are you and Your Basic Business Students Asking the Right Questions? Business Education Forum, 57(3), 33–37. [Google Scholar]
  21. Hemming, H. E. (2000). Encouraging Critical Thinking: “But - What Does That Mean?” McGill Journal of Education, 35(2), 173-186. [Google Scholar]
  22. Iordanou, K. (2013). Developing Face-to-face Argumentation Skills: Does Arguing on the Computer Help? Journal of Cognition and Development, 14(2), 292-320. https://doi.org/10.1080/15248372.2012.668732. [Google Scholar] [Crossref] 
  23. Jacob, S. M. (2012). ‘Mathematical Achievement and Critical Thinking Skills in Asynchronous Discussion Forums’, Procedia – Social and Behavioral Sciences, 31, (2012), 800-804. https://doi:10.1016/j.sbspro.2011.12.144. [Google Scholar] [Crossref] 
  24. Kaya, O. N. (2005). Tartışma Teorisine Dayalı Öğretim Yaklaşımının Öğrencilerin Maddenin Tanecikli Yapısı Konusundaki Başarılarına ve Bilimin Doğası Hakkındaki Kavramalarına Etkisi. (Publication Code: 160536) [Unpublished Doctoral Dissertation, Gazi University]. Ankara. [Google Scholar]
  25. Koray, O., Köksal, M. S., Özdemir, M. & Presley, A. İ. (2007). The Effect of Creative and Critical Thinking Based Laboratory Applications on Academic Achievement and Science Process Skills. Elementary Education Online, 6(3), 377–389. [Online]: http://ilkogretim-online.org.tr [Google Scholar]
  26. Kökdemir, D. (2003). Eleştirel Düşünme ve Bilim Eğitimi. PIVOLKA. 2(4), 3-5.  [Google Scholar]
  27. Kökdemir, D. & Demirutku, K. (2000). Psikoloji Derslerinde Tümdengelim Yönteminin Uygulanması, Internet Uygulamaları ve Notlandırma Sistemi. XI. Ulusal Psikoloji Kongresi, 19–22 Eylül, Ege Üniversitesi, İzmir. [Google Scholar]
  28. Kwon, Y. J. & Lawson, A. E. (2000). Linking Brain Growth with the Development of Scientific Reasoning Ability and conceptual change during adolescence. Journal of Research in Science Teaching, 37(1), 44–62. https://doi.org/10.1002/(SICI)1098-2736(200001)37:1<44::AID-TEA4>3.0.CO;2-J. [Google Scholar] [Crossref] 
  29. Lee, Y.  & Ertmer, P. A. (2006). Examining the Effect of Small Group Discussions and Question Prompts on Vicarious Learning Outcomes. Journal of. Research Technology Education, 39(1), 66–80. https://doi.org/ 10.1080/15391523.2006.10782473. [Google Scholar] [Crossref] 
  30. Longino, H. (1990). Science as Social Knowledge: Values and Objectivity in Scientific Inquiry. Princeton University Press, Princeton. [Google Scholar]
  31. Maloney, J. & Simon, S. (2006) Mapping Children’s Discussions of Evidence in Science to Assess Collaboration and Argumentation. International Journal of Science Education, 28(15), 1817–1841. https://doi.org/10.1080/09500690600855419. [Google Scholar] [Crossref] 
  32. Meral, E., Sahin, İ. F. & Akbas, Y. (2021). The Effects of Argumentation-based Teaching Approach on Students’ Critical Thinking Disposition and Argumentation Skills: “Population in Our Country International Journal of Psychological and Educational Studies, 8 (1), 51-74. https://doi.org/10.17220/ijpes.2021.8.1.195. [Google Scholar] [Crossref] 
  33. Nussbaum, E. M., & Sinatra, G. M. (2003). Argument and Conceptual Engagement. Contemporary Educational Psychology, 28(3), 384–395. https://doi.org/10.1016/S0361-476X(02)00038-3. [Google Scholar] [Crossref] 
  34. O’Connor, C. & Joffe, H. (2020). Intercoder Reliability in Qualitative Research: Debates and Practical Guidelines. International Journal of Qualitative Methods, 19, 1–13. https://doi.org/10.1177/1609406919899220. [Google Scholar] [Crossref] 
  35. Osborne, J., Erduran S. & Simon, S. (2004). Enhancing the Quality of Argumentation in School Science. Journal of Research in Science Teaching. 41 (10) 994–1020. . https://doi.org/10.1002/tea.20035. [Google Scholar] [Crossref] 
  36. Osborne, J. (2002). Science Without Literacy: A Ship Without A Sail?. Cambridge Journal of Education, 32(2), 203-218. https://doi.org/10.1080/03057640220147559. [Google Scholar] [Crossref] 
  37. Özdemir, S. M. (2005). Üniversite Öğrencilerinin Eleştirel Düşünme Becerilerinin Çeşitli Etkenler Açısından Değerlendirilmesi. Türk Eğitim Bilimleri Dergisi, 3(3), 297–316. [Google Scholar]
  38. Öztürk, A. & Doğanay, A. (2019). Development of Argumentation Skills through Socioscientific Issues in Science Course: A Collaborative Action Research. Turkish Online Journal of Qualitative, 10 (1), 52-89. https://doi.10.17569/ tojqi.453426. [Google Scholar]
  39. Petrucci, Harwood & Herring, (2002). (Çev. Uyar, T. & Aksoy, S.). Genel Kimya 2. Palme Yayıncılık [(Trans. Uyar, T. & Aksoy, S.). General Chemistry 2.  Palme Ed.]. [Google Scholar]
  40. Rayner, G. & Papakonstantinou, T. (2015). Employer Perspectives of the Current and Future Value of STEM Graduate Skills and Attributes: An Australian Study. Journal of Teaching and Learning for Graduate Employability, 6(1), 100–115. doi: 10.21153/jtlge2015vol6no1art576. [Google Scholar] [Crossref] 
  41. Sampson, V., & Walker, J., P. (2012). Argument-driven Inquiry as a Way to Help Undergraduate Students Write to Learn by Learning to Write in Chemistry. International Journal of Science Education, 34(10), 1443-1485. https://doi.org/ 10.1080/09500693.2012.667581. [Google Scholar] [Crossref] 
  42. Schafersman, S. D. (1991). An Introduction to Critical Thinking. URL (last checked 12 March 2021) http://www.freeinquiry.com/ critical-thinking.html.  [Google Scholar]
  43. Seferoğlu, S. & Akbıyık, C. (2006). Eleştirel Düşünme ve Öğretimi. Hacettepe Üniversitesi Dergisi, 30(30), 193-200. [Google Scholar]
  44. Simon, S., Erduran, S. & Osborne, J. (2006). Learning to Teach Argumentation: Research and Development in the Science Classroom. International Journal of Science Education, 28 (2–3), 235-260. https://doi.org/10.1080/09500690500336957. [Google Scholar] [Crossref] 
  45. Snyder, L. G. & Snyder, M. J. (2008). Teaching Critical Thinking and Problem Solving Skills.  Delta Pi Epsilon Journal, 50(2), 90-99. [Google Scholar]
  46. Sönmez, E., Memiş E. K. & Yerlikaya, Z. (2021). The Effect of Practices Based on Argumentation-based Inquiry Approach on Teacher Candidates’ Critical Thinking. Educational Studies, 47 (1), 59-83 https://doi.org/ 10.1080/03055698.2019.1654364. [Google Scholar] [Crossref] 
  47. Stemler, S (2000). An Overview of Content Analysis. Practical Assessment, Research and Evaluation 7(17), 137–146. [Google Scholar]
  48. Stephenson, N. S. & Sadler-McKnight, N. P. (2016). Developing Critical Thinking Skills Using the Science Writing Heuristic in the Chemistry Laboratory. Chemistry Education Research and Practice, 17(1), 72-79. https://doi.org/ 10.1039/x0xx00000x. [Google Scholar] [Crossref] 
  49. Taasoobshirazi, G. & Hickey, D. T.  (2005). Promoting Argumentative Discourse:  A Design-based Implementation and Refinement of an Astronomy Multimedia Curriculum, Assessment Model, and Learning Environment. Astronomy Education Review, 4(1), 53–70.  [Google Scholar]
  50. ten Dam, G. T. M. & Volman, M. L. L (2004). Critical Thinking as a Citizenship Competence: Teaching Strategies. Learning and Instruction, 14(.4), 359–379. https://doi.org/10.1016/j.learninstruc.2004.01.005. [Google Scholar] [Crossref] 
  51. Ural, E. & Gençoğlan, D. M. (2020). The Effect Argumentation-Based Science Teaching Approach on 8th Graders’ Learning in the Subject of Acids-Bases their Attitudes towards Science Class and Scientific Process Skills. İnterdisciplinary Journal of Environmental and Science Education, 16(1), e02207. https://doi.org/10.29333/ijese/6369. [Google Scholar] [Crossref] 
  52. Van Zee Emily, H., Iwasyk, M., Kurose, A., Simson, D. & Wild, J. (2001). Student and Teacher Questioning During Conversation about Science. Journal of Research in Science Teaching, 38 (2), 159–190. [Google Scholar]
  53. Vieira, R. M., Tenreiro-Vieira, C. & Martins, I. P. (2011). Critical Thinking: Conceptual Clarification and Its Importance in Science Education. Science Education International, 22 (1), 43-54. [Google Scholar]
  54. Von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to Learn and Learning to Argue: Case Studies of How Students’ Argumentation Relates to Their Scientific Knowledge. Journal of Research in Science Teaching, 45(1), 101-131. https://doi.org/10.1002/tea.20213. [Google Scholar] [Crossref] 
  55. Watson, G. & Glaser, E.M. (1964).Watson-Glaser Critical Thinking Appraisal Manual. Psychological Corporation. [Google Scholar]
  56. Weber, R. P. (1990). Basic Content Analysis, 2nd ed. Newbury Park, CA. [Google Scholar]
  57. Wiles, J. L., Allen, R. E. S., & Butler, R. (2016). Owning my Thoughts was Difficult: Encouraging Students to Read and Write Critically in a Tertiary Qualitative Research Methods Course. Journal of University Teaching and Learning Practice, 3(1), 8. 1-18. [Google Scholar]
  58. Yerrick, R. K. (2000). Lower track science students' argumentation and open inquiry instruction. Journal of Research in Science Teaching, 37(8), 807-838. https://doi.org/10.1002/1098-2736(200010)37:8<807::AID-TEA4>3.0.CO;2-7. [Google Scholar] [Crossref] 
  59. Zohar A., Weinberger, Y.& Tamir, P. (1994). The Effect of The Biological Critical Thinking Project on The Development of Critical Thinking. Journal of Research in Science Teaching. 31 (2), 183–196. https://doi.org/10.1002/tea.3660310208. [Google Scholar] [Crossref] 
  60. Zohar, A. & Nemet, F. (2002). Fostering Students’ Knowledge and Argumentation Skills through Dilemmas in Human Genetics. Journal of Research in Science Teaching, 39 (1) 35–62. https://doi.org/10.1002/tea.10008. [Google Scholar] [Crossref]