International Association of Educators   |  ISSN: 1554-5210

Original article | International Journal of Progressive Education 2021, Vol. 17(3) 381-396

Determination of Pre-service Science Teachers' Conceptual Understandings about the “Solutions: Dissolving-Melting” with Predict-Observe-Explain Technique

Murat Okur & Hatice Güngör Seyhan

pp. 381 - 396   |  DOI: https://doi.org/10.29329/ijpe.2021.346.24   |  Manu. Number: MANU-2101-05-0001

Published online: June 07, 2021  |   Number of Views: 10  |  Number of Download: 80


Abstract

In the study, the effect of Predict-Observe-Explain (POE) activities carried out within the scope of argumentation-supported learning method on the detection of the conceptual understandings of the pre-service science teachers about “Solutions: Dissolving-Melting” was examined. Based on this main purpose, a case study was applied in the study, one of the qualitative research methods. The study group of the research consists of 22 pre-service science teachers. According to the data obtained at the end of the study, it was observed that pre-service teachers structured non-scientific claims and justifications, and could not use their refutation skills adequately before applications. It was observed that pre-service teachers were more willing and competent in developing scientific arguments in POE activities.

Keywords: Argumentation-Supported Learning, Predict-Observe-Explain, Pre-Service Science Teacher, Solutions, Dissolving, Melting


How to Cite this Article?

APA 6th edition
Okur, M. & Seyhan, H.G. (2021). Determination of Pre-service Science Teachers' Conceptual Understandings about the “Solutions: Dissolving-Melting” with Predict-Observe-Explain Technique . International Journal of Progressive Education, 17(3), 381-396. doi: 10.29329/ijpe.2021.346.24

Harvard
Okur, M. and Seyhan, H. (2021). Determination of Pre-service Science Teachers' Conceptual Understandings about the “Solutions: Dissolving-Melting” with Predict-Observe-Explain Technique . International Journal of Progressive Education, 17(3), pp. 381-396.

Chicago 16th edition
Okur, Murat and Hatice Gungor Seyhan (2021). "Determination of Pre-service Science Teachers' Conceptual Understandings about the “Solutions: Dissolving-Melting” with Predict-Observe-Explain Technique ". International Journal of Progressive Education 17 (3):381-396. doi:10.29329/ijpe.2021.346.24.

References
  1. Abraham, M.R.; Gryzybowski, E.B.; Renner, J.W. & Marek, A.E. (1992). Understanding and misunderstanding of eighth graders of five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29, 105-120. [Google Scholar]
  2. Altınok, O. (2017). TGA tekniğine dayali laboratuvar etkinliklerinin fen bilgisi öğretmen adaylarinin argüman oluşturma becerilerine etkisinin incelenmesi. Yayınlanmamış Yüksek Lisans Tezi, Recep Tayyip Erdoğan Üniversitesi, Fen Bilimleri Enstitüsü, Rize.  [Google Scholar]
  3. Andersson, B. (1986). Pupils' explanations of some aspects of chemical reactions. Science Education, 70(5), 549-563. [Google Scholar]
  4. Arı, E., & Bayram, H. (2011). Yapılandırmacı yaklaşım ve öğrenme stillerinin laboratuvar uygulamalarında başarı ve bilimsel süreç becerileri üzerine etkisi. İlköğretim Online, 10(1), 311-324.  [Google Scholar]
  5. Atasoy, B. (2004). Fen öğrenimi ve öğretimi (2. Baskı). Ankara: Asil yayın Dağıtım. [Google Scholar]
  6. Ayas, A., & Demirbaş, A., (1997).  Turkish secondary students’ conceptions of introductory chemistry concepts. Journal of Chemical Education. 74(5), 518-521. [Google Scholar]
  7. Aydın, M., Ekmekçi, S. & Özkara, D. (2010). Fen bilgisi öğretmenliği öğrencilerinin atmosferde meydana gelen doğal elektriklenme konusuyla ilgili kavram yanılgıları ve bilgi eksiklikleri. 27. Uluslararası Fizik Kongresi, Türk Fizik Derneği, s. 781, İstanbul. [Google Scholar]
  8. Ayvacı, H.Ş. & Durmş, A., (2016). TGA yöntemine dayalı laboratuvar uygulamalarının fen bilgisi öğretmen adaylarının “ısı ve sıcaklık” konusunda akademik başarılarına etkisi. PAU Egit Fak Derg, 39, 101-118. [Google Scholar]
  9. Balaydın, H.T. & Altınok, O., (2018). Türkiye’de fen eğitiminde TGA stratejisi: Bir meta sentez, Recep Tayyip Erdoğan Üniversitesi Sosyal Bilimler Dergisi, 4(8), 427-444. [Google Scholar]
  10. Berland, L.K., & Reiser, B. J. (2011). Classroom communities’ adaptations of the practice of scientific argumentation. Science Education, 95(2), 191-216.  [Google Scholar]
  11. Bilen, K. ve Aydoğdu, M., (2012). TGA (tahmin et-gözle-açıkla) stratejisine dayalı laboratuar uygulamalarının öğrencilerin bilimsel süreç becerileri ve bilimin doğası hakkındaki düşünceleri üzerine etkisi. Gaziantep Üniversitesi Sosyal Bilimler Dergisi 11(1), 49-69 [Google Scholar]
  12. Birinci Konur, K. & Ayas, A. (2010). Sınıf öğretmeni adaylarının gazlarda sıcaklıkhacim-basınç ilişkisini anlama seviyeleri. Türk Fen Eğitimi Dergisi, 7(3). [Google Scholar]
  13. Bromley, D.B., (1986). The case-study Fboujmethod in psychology and related disciplines (pp. 39-54). Chichester: Wiley. [Google Scholar]
  14. Burke, K. A., Greenbowe, T. J., & Hand, B. M. (2005). Excerpts from the process of using inquiry and the science writing heuristic (Doctoral Dissertation). Prepared for the Middle Atlantic Discovery Chemistry Program, MoravianCollege, Bethlehem. [Google Scholar]
  15. Çalık, M., Ayas, A. & Coll R.C., (2010), Investigating the effectiveness of teaching methods based on a four-step constructivist strategy, J. Sci. Educ. Technol., 19, 32–48. [Google Scholar]
  16. Çimer, O.S. & Çakır, İ. (2008). Using the Predict-Observe-Explain (POE) strategy to teach the concept of osmosis. XIII. IOSTE symposium 21-26 September- Izmir. [Google Scholar]
  17. Creswell, J.W., (2012). Araştırma deseni: Nitel, nicel ve karma yöntem araştırmaları, (Çev.Ed: S.B. Demir, 4. Baskıdan Çeviri, İstanbul: Eğiten Kitap). [Google Scholar]
  18. Durmuş, A. (2014). TGA yöntemine dayalı laboratuvar uygulamalarının fen bilgisi öğretmen adaylarının “Isı ve sıcaklık” konusunu anlamalarina etkisi. Yayınlanmamış Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi [Google Scholar]
  19. Eğitim Bilimleri Enstitüsü, İlköğretim Anabilim Dalı, Fen Bilgisi Eğitimi Bilim Dalı, Trabzon. [Google Scholar]
  20. Ebenezer, J. V., Gaskell, P. J. (1995). Relational conceptual change in solution chemistry. Science Education, 79, 1-17. [Google Scholar]
  21. Ebenezer, J.V. & Erickson, L.G. (1996). Chemistry students’ conception of solubility: A phenomenograpy. Science Education, 80 (2), 181-201. [Google Scholar]
  22. Erduran, S. & Jimenez-Aleixandre, M. P. (2007). Argumentation in Science Education: Perspectives from Classroom-Based Research. Dordrecht: Springer [Google Scholar]
  23. Fensham, P.J, Gunstone, R.F. & White, R.T (1995). Science content and constructivist views of learning and teaching. In P. J. Fensham, R. F. Gunstone & R. T. White (Eds.), The content of science (pp. 1-8). London: The Falmer Press.  [Google Scholar]
  24. Gil-Perez, D. & Carrascosa-Alis, J. (1994). Bringing pupils’ closer to a scientific construction of knowledge: a permanent feature in innovations in science teaching. Science Education, 78(3), 301-315. [Google Scholar]
  25. Gonzalez, F.M., (1997). Diagnosis of Spanish primary school students’ commonalternative science concepts. School Science and Mathematics, 97(2), 68-74. [Google Scholar]
  26. Goodwin, A. (2002). Is salt melting when it dissolves in water? Journal of Chemical Education, 79, 393-396. [Google Scholar]
  27. Gott, R., & Duggan, S. (2007). A framework for practical work in science and scientific literacy through argumentation. Research in Science, 25(3), 271–291. [Google Scholar]
  28. Griffiths, A.K. & Preston, K.R., (1992). Grade-12 students’ misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29(6), 611-628.   [Google Scholar]
  29. Güngör Seyhan, H. & Okur, M., (2020). Fen bilimleri laboratuarlarında mobil teknoloji desteğinin önemi hakkında öğretmen görüşlerinin incelenmesi. YYÜ Eğitim Fakültesi Dergisi (YYU Journal of Education Faculty), 17(1), 1242-1271. [Google Scholar]
  30. Jimenez-Aleixandre, M. (2007). Designing argumentation learning environments. In S. Erduran & M. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research. Dordrecht: Springer Academic Publishers.  [Google Scholar]
  31. Kearney, M., & Treagust, D.F. (2000). An investigation of the classroom use of prediction-observation-explanation computer tasks designed to elicit and promote discussion of students' conceptions of force and motion. Paper presented at the Annual Meeting of The National Association for Research in Science Teaching, USA. [Google Scholar]
  32. Köse, S., Coştu, B. & Keser, Ö.F. (2003). Determination misconceptions in subjects science: POE  method and sample activities. PAU Education Faculty, 13(1), 43–53.  Keeratichamroen, W., Panijpan, B. & Dahsah, C. (2007). Using the predict-observe-explain (POE) to promote students learning of tapioca bomb and chemical reactions. Mahidol University Annual Research Abstracts, 35, 563. [Google Scholar]
  33. Liew, C., & Treagust, D.F. (1998). The effectiveness of predict-observe-explain tasks in diagnosing students’ understanding of science and in identifying their levels of achievement. Paper presented at the annual meeting of American Educational Research Association, San Diego. [Google Scholar]
  34. McGregor, L. & Hargrave, C. (2008). The use of “predict-observe-explain” with on-line discussion boards to promote conceptual change in the science laboratory learning environment. In K. McFerrin et al. (Eds.), Proceedings of Society for Information Technology and Teacher Education International Conference (pp.4735-4740). Chesapeake, VA: AACE. [Google Scholar]
  35. McGregor, L. & Hargrave, C. (2008). The use of predict-observe-explain with on-linediscussion boards to promote conceptual change in the science laboratorylearning environment. Society for Information Technology & Teacher Education International Conference, 1, 4735-4740. [Google Scholar]
  36. Milli Eğitim Bakanlığı, (2013; 2017). İlköğretim kurumları (ilkokullar ve ortaokullar) fen bilimleri dersi (3, 4, 5, 6, 7 ve 8. sınıflar) Öğretim Programı. Talim ve Terbiye Kurulu Başkanlığı. Ankara. [Google Scholar]
  37. Nakhleh, M.B. (1992). Why some students don’t learn chemistry: Chemical misconceptions. J. Chem. Educ., 69(3), 191. [Google Scholar]
  38. Osborne, J., Erduran, S., & Simon, S. (2004a). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020. [Google Scholar]
  39. Osborne, J., Erduran, S., & Simon, S. (2004b). Ideas, evidence and argument in science. London: Nuffield Foundation. [Google Scholar]
  40. Özmen, H. (2005). Kimya öğretiminde yanlış kavramalar: bir literatür araştırması. Türk Eğitim Bilimleri Dergisi, 3(1), 23-45. [Google Scholar]
  41. Pardo, J.Q. & Partoles, J.J.S. (1995), Students and teachers misapplication of Le-chatelier’s principle: Implications for the teaching of chemical equilibrium, Journal of Research in Science Teaching, 32(9), 939-957. [Google Scholar]
  42. Pierri E., Karatrantou A. & Panagiotakopoulos C., (2008), Exploring the phenomenon of ‘change of phase’ of pure substances using the Microcomputer-Based-Laboratory (MBL) system, Chem. Educ. Res. Pract., 9, 234–239. [Google Scholar]
  43. Prieto, T., Blanco, A., & Rodriguez, A. (1989). The ideas of 11 to 14-year-old students about the nature of solutions. International Journal of Science Education, 11 (4), 451-463. [Google Scholar]
  44. Rakkapao, S., Pengpan, T. & Prasitpong, S. (2013). Evaluation of POE and instructor-led problemsolving approaches integratedinto force and motion lecture classes using a model analysis technique. European Journal of Physics. 35, 1-10.  [Google Scholar]
  45. Renner, J.W., Abraham, M.R., & Birnie, H.H. (1985). The importance of form of student ac- quisation daha in physics learning cycles, Journal of Research in Science Teaching 22(4), 303-325. [Google Scholar]
  46. Şahin, Ç. & Çepni, S. (2011). Development of a two tiered test for determining differentiation in conceptual structure related to “floating-sinking, buoyancy and pressure” concepts. Turkish Science Education, 8(1), 79-110. [Google Scholar]
  47. Sampson, V., & Clark, D. B. (2011). A control of the collaborative scientific argumentation practices of two high and two low performing groups. Research in Science Education, 41(1), 63-97.  [Google Scholar]
  48. Shulman, L. S. & Tamir, P. (1973). Research on teaching in the natural science. In R. M. Travers (Ed.), Second handbook of research on teaching: A project of the America educational research association (pp. 1018–1148). Chicago, IL: Rand McNally and Company. [Google Scholar]
  49. Slavy, R. (1991). Using analogy to overcome misconceptions about conservation of mater. J. Res. Sci. Teaching 28, 305-313. [Google Scholar]
  50. Smith, K.C. & Nakhleh, M.B. (2011). University students' conceptions of bonding in melting and dissolving phenomena. Chem. Educ. Res. Pract., 12, 398-408. [Google Scholar]
  51. Tamir, P., Doran, R.L., & Chye, Y.O., (1992). Practical skills testing in science. Studies in Educational Evaluation, 18(1), 263-275. [Google Scholar]
  52. Tetik, S., (2019). 9. sınıf kimya dersi “Sıvılar” konusunun 5E modeli ve TGA tekniği (tahmin-gözlem-açıklama) ile öğretiminin öğrencilerin başarısına etkisi, Yayınlanmamış Yüksek Lisans Tezi, Marmara Üniversitesi, Eğitim Bilimleri Enstitüsü, Ortaöğretim Fen ve Matematik Alanları Eğitimi Ana Bilim Dalı, Kimya Öğretmenliği Bilim Dalı, İstanbul. [Google Scholar]
  53. Tippett, C. (2009). Argumentation: The language of science. Journal of Elementary Science Education, 21(1), 17-25.  [Google Scholar]
  54. White, R., & Gunstone, R. (1992). Probing understanding. London and New York: The Falmer Press. [Google Scholar]
  55. Yaman, F., (2012). Bilgisayara dayalı “Tahmin-gözlem-açıklama (TGA)” etkinliklerinin öğrencilerin asit-baz kimyasına yönelik kavramsal anlamalarina etkisi: Türkiye ve ABD örneği. Doktora tezi, Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü, Ortaöğretim Fen ve Matematik Alanları Anabilim Dalı, Kimya Eğitimi Bilim Dalı, Trabzon. [Google Scholar]
  56. Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin. [Google Scholar]
  57. Yıldırım, P., (2016). Fiziksel ve kimyasal değişimler konusunda “Tahmin-gözlem-açıklama” stratejisi kullanımının akademik başarı ve kalıcılığa etkisinin incelenmesi.  Yayınlanmamış Yüksek Lisans Tezi, Pamukkale Üniversitesi, Eğitim Bilimleri Enstitüsü, İlköğretim Anabilim Dalı, Denizli.  [Google Scholar]
  58. Yılmaz, H. & Şahin, S., (2011). Pre-Service teachers' epistemological beleifs and conceptions of teaching, Australian Journal of Teacher Education, 36(1), 6. [Google Scholar]
  59. Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.  [Google Scholar]
  60. Zoller, U. (1990), Students’ misunderstandings and misconceptions in college freshman chemistry (general and organic), Journal of Research in Science Teaching, 27(10), 1053-1065. [Google Scholar]
  61. Zuzovsky, R., & Tamir, P. (1999). Growth patterns in students’ ability to supply scientific explanations: Findings from the Third International mathematics and science study in Israel. International Journal of Science Education, 21(10), 1101-1121. [Google Scholar]