International Association of Educators   |  ISSN: 2834-7919   |  e-ISSN: 1554-5210

Original article | International Journal of Progressive Education 2023, Vol. 19(1) 112-130

Impact of Pre-Service Teachers' Awareness of Using Multiple Representations on the Argumentation-Based Inquiry Process

Funda Yeşildağ-Hasançebi

pp. 112 - 130   |  DOI: https://doi.org/10.29329/ijpe.2023.517.8   |  Manu. Number: MANU-2108-12-0006.R2

Published online: February 01, 2023  |   Number of Views: 161  |  Number of Download: 373


Abstract

This study aimed to investigate how awareness of pre-service teachers is reflected in the process when making oral and written arguments, the effect of using modal representations on the quality of the argument, what modal representations students use when making arguments, and what modal representations they consider important (especially when defending their claims). The method of the research is the convergent parallel design, one of the mixed research methods. The sample of the study consists of 2nd grade pre-service teachers (N=83) studying at a state university in the north east of Turkey, selected by convenience sampling method. In the quantitative dimension of the study, Argumentation-based inquiry (ABI) reports evaluation form was used, while in the qualitative dimension, video recordings, semi-structured interviews and photographs (presentation board pictures) and ABI reports were used as data collection tools. Analysis shows pre-service teachers need an education or an activity to raise awareness.  The pre-service teachers who gained this awareness use different types of representation in a larger number and variety and do this in order to serve a purpose (such as defending their claims).

Keywords: Argumentation-Based Inquiry, Multi Modal Representation, Multiple Representation, Quality of the Argument


How to Cite this Article?

APA 6th edition
Yesildag-Hasancebi, F. (2023). Impact of Pre-Service Teachers' Awareness of Using Multiple Representations on the Argumentation-Based Inquiry Process . International Journal of Progressive Education, 19(1), 112-130. doi: 10.29329/ijpe.2023.517.8

Harvard
Yesildag-Hasancebi, F. (2023). Impact of Pre-Service Teachers' Awareness of Using Multiple Representations on the Argumentation-Based Inquiry Process . International Journal of Progressive Education, 19(1), pp. 112-130.

Chicago 16th edition
Yesildag-Hasancebi, Funda (2023). "Impact of Pre-Service Teachers' Awareness of Using Multiple Representations on the Argumentation-Based Inquiry Process ". International Journal of Progressive Education 19 (1):112-130. doi:10.29329/ijpe.2023.517.8.

References
  1. Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2–3), 131–152. http://doi.org/10.1016/S0360-1315(99)00029-9 [Google Scholar]
  2. Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183-198. https://doi.org/10.1016/j.learninstruc.2006.03.001 [Google Scholar] [Crossref] 
  3. Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching, 46(1), 27-49. https://doi.org/10.1002/tea.20265 [Google Scholar] [Crossref] 
  4. Aydeniz, M., & Dogan, A. (2016). Exploring the impact of argumentation on pre-service science teachers’ conceptual understanding of chemical equilibrium. Chemistry Education Research and Practice, 17, 111–119. http://doi.org/10.1039/C5RP00170F [Google Scholar]
  5. Bell, P., & Linn, M. C. (2000). Scientific arguments  as learning  artifacts: Designing  for  learning  from the web with KIE. International Journal of Science Education, 22(8), 797–817. http://doi.org/10.1080/095006900412284 [Google Scholar]
  6. Burke, K. A.,  Greenbowe T. J., & Hand, B. M. (2006). Implementing the science writing heuristic in the chemistry laboratory. Journal of Chemical Education, 83(7), 1032-1038. https://doi.org/10.1021/ed083p1032 [Google Scholar] [Crossref] 
  7. Choi, A., Hand, B., & Greenbowe, T. (2013). Students’ written arguments in general chemistry laboratory investigations. Research in Science Education, 43(5), 1763-1783. https://doi.org/10.1007/s11165-012-9330-1 [Google Scholar] [Crossref] 
  8. Choi, A., Hand, B., & Norton-Meier, L. (2014). Grade 5 students’ online argumentation about their in-class inquiry investigations. Research in Science Education, 44(2), 267-287. https://doi.org/10.1007/s11165-013-9384-8 [Google Scholar] [Crossref] 
  9. Creswell, J. W. & Plano Clark, V. L. (2011) Designing and conducting mixed methods research, Thousand Oaks, California, Sage Publicaitons. [Google Scholar]
  10. Creswell, J. W., & Plano Clark, V. L. (2018). Karma yöntem araştırmaları: Tasarımı ve yürütülmesi [Mixed method research: Design and execution]. (Y. Dede, S. B. Demir, Dü, & A. Delice, Çev.) Ankara, Türkiye: Anı Yayıncılık.. [Google Scholar]
  11. DiSessa, A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293–331. http://doi.org/10.1207/s1532690xci2203_2 [Google Scholar]
  12. Dolan, E., & Grady, J. (2010). Recognizing students’ scientific reasoning: a tool for categorizing complexity of reasoning during teaching by inquiry. Journal of Science Teacher Education, 21, 31–55. https://doi.org/10.1007/s10972-009-9154-7 [Google Scholar] [Crossref] 
  13. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287-312. [Google Scholar]
  14. Evagorou, M., & Osborne, J. (2013). Exploring young students’ collaborative argumentation within a socioscientific issue. Journal of Research in Science Teaching, 50(2), 209–237. http://doi.org/10.1002/tea.21076 [Google Scholar]
  15. Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88(6), 915–933.  https://doi.org/10.1002/sce.20012 [Google Scholar] [Crossref] 
  16. Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: An illustrative example from students sharing knowledge about refraction. European Journal of Physics, 33(3), 657- 666. https://doi.org/10.1088/0143-0807/33/3/657 [Google Scholar] [Crossref] 
  17. Ford, M. (2007). Disciplinary authority and accountability in scientific practice and learning. Science Education, 92, 404-423. https://doi.org/10.1002/sce.20263 [Google Scholar] [Crossref] 
  18. Gilbert, J. (2005). Visualization: A metacognitive skill in science and science education. In J. Gilbert (Ed.), Visualization in science education. Dordrecht: Springer.  [Google Scholar]
  19. Gunel, M., Hand B., & Gunduz, S. (2006). Comparing student understanding of quantum physics when embedding multimodal representations into two different writing formats: Presentations format versus summary report format. Science Education, 90, 1092–1112.  https://doi.org/10.1002/sce.20160 [Google Scholar] [Crossref] 
  20.  Gunel, M., & Yesildag-Hasancebi, F. (2016). Modal representations and their role in the learning process: A theoretical and pragmatic analysis. Educational Sciences: Theory & Practice, 16(1), 109-126. https://doi.org/10.12738/estp.2016.1.0054 [Google Scholar] [Crossref] 
  21. Hand, B. (Ed.). (2008). Science inquiry, argument and language. Rotterdam: Sense. [Google Scholar]
  22. Hand, B., Alvermann, D. E., Gee, J., Guzzetti, B. J., Norris, S. P., Phillips, L. M., Prain, V., & Yore, L. D.  (2003). Message from the ‘‘Island Group’’: What is literacy in science literacy? Journal of Research in Science Teaching, 40(7), 607–615. [Google Scholar]
  23. Hand, B. & Choi, A., (2010), Examining the Impact of Student Use of Multiple Model Representations in Constructing Arguments in Organic Chemistry Laboratory Classes, Res. Sci. Educ., 40, 29-44. https://doi.org/10.1007/s11165-009-9155-8 [Google Scholar] [Crossref] 
  24. Hand, B., Wallace, C., & Yang, E. (2004). Using the science writing heuristic to enhance learning outcomes from laboratory activities in seventh grade science: Quantitative and qualitative aspects. International Journal of Science Education, 26, 131-149.  [Google Scholar]
  25. Hasançebi, F. (2014). The impacts of argument-based inquiry (ABI) approach on students' science achievements, argument skill and personal development. (Unpublished doctoral thesis), Ataturk University, Erzurum. [Google Scholar]
  26. Jiménez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). “Doing the lesson” or “ doing science”: Argument in high school genetics. Science Education, 84(6), 757–792. https://onlinelibrary.wiley.com/journal/1098237x [Google Scholar]
  27. Kaya, E. (2013). Argumentation practices in classroom: Pre-service teachers’ conceptual understanding of chemical equilibrium. International Journal of Science Education, 35(7), 1139–1158. http://doi.org/10.1080/09500693.2013.770935 [Google Scholar]
  28. Kaya, O. N, & Kılıç, Z. (2008). Etkin bir fen eğitimi için tartışmacı söylev [Argumentative Discourse for the Effective Teaching of Science]. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 9(3), 89-100. https://dergipark.org.tr/en/pub/kefad/issue/59524/855999 [Google Scholar]
  29. Kelly, G. J., & Bazerman, C. (2003). How students argue scientific claims: a rhetorical–semantic analysis. Applied Linguistics, 24(1), 28–55. https://doi.org/10.1093/applin/24.1.28 [Google Scholar] [Crossref] 
  30. Kelly, G. J., Drucker, S., & Chen, K. (1998). Students’ reasoning about electricity: combining performance assessment with argumentation analysis. International Journal of Science Education, 20, 849–871. https://doi.org/10.1080/0950069980200707 [Google Scholar] [Crossref] 
  31. Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanogra- phy students’ use of evidence in writing. Science Education, 86(3), 314–342.  https://doi.org/10.1002/sce. 10024 [Google Scholar] [Crossref] 
  32. Keys, C. W., Hand, B., Prain, V.,  & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory ınvestigations in secondary science. Journal of research in science Teaching. 36(10), 1065-1084. https://doi.org/10.1002/(SICI)1098-2736(199912)36:10<1065::AID-TEA2>3.0.CO;2-I [Google Scholar] [Crossref] 
  33. Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205–226. http://doi.org/10.1016/S0959-4752(02)00021-X [Google Scholar]
  34. Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The role of representations and tools in the chemistry laboratory and their implications for chemistry learning. Journal of the learning sciences, 9(2), 105–143. https://doi.org/10.1207/s15327809jls0902_1 [Google Scholar] [Crossref] 
  35. Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational compe- tence. In J. Gilbert (Ed.), Visualization in science education (pp. 121–146). Dordrecht: Springer. [Google Scholar]
  36. Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. R. Martin & R. Veel (Eds.), Reading science (pp. 87–112). London: Routledge.  [Google Scholar]
  37. Mendonça, P. C. C., & Justi, R. (2013). The relationships between modelling and argumentation from the perspective of the model of modelling diagram. International Journal of Science Education, 35(14), 2407–2434. http://doi.org/10.1080/09500693.2013.811615 [Google Scholar]
  38. Munfaridah, N., Avraamidou, L., & Goedhart, M. (2021). The use of multiple representations in undergraduate physics education: what do we know and where do we go from here?. Eurasia Journal of Mathematics, Science and Technology Education, 17(1), em1934. https://doi.org/10.29333/ejmste/9577 [Google Scholar] [Crossref] 
  39. Murcia, K. (2010). Multi-modal representations in primary science: What’s offered by interactive whiteboard technology. Teaching Science, 56 (1), 23-29. [Google Scholar]
  40. Nakhleh, M. B., & Postek, B. (2008). Learning chemistry using multiple external representations. In J. K. [Google Scholar]
  41. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 209–231). Dordrecht: Springer. [Google Scholar]
  42. Namdar, B. (2015). An examination of preservice science teachers’ representational modality preferences during computer-supported knowledge organization. Journal of Theory and Practice in Education, 11(3), 949–970. https://dergipark.org.tr/en/pub/eku/issue/5466/74192 [Google Scholar]
  43. Namdar, B. (2017). A case study of preservice science teachers with different argumentation understandings: Their views and practices of using representations in argumentation. International Journal of Progressive Education, 13, 95–111. Retrieved 23 March 2019 from https://eric.ed.gov/?id=EJ1159876. [Google Scholar]
  44. Namdar, B., & Shen, J. (2016). Intersection of argumentation and the use of multiple representations in the context of socioscientific issues. International Journal of Science Education, 38(7), 1100–1132. http://doi.org/10.1080/09500693.2016.1183265 [Google Scholar]
  45. Opfermann, M., Schmeck, A., & Fischer, H. E. (2017). Multiple Representations in Physics and Science Education - Why Should We Use Them? In D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple Representations in Physics Education (pp. 1-22). Springer, Cham. https://doi.org/10.1007/978-3- 319-58914-5_1 [Google Scholar] [Crossref] 
  46. Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463–466. http://doi.org/10.1126/science.1183944 [Google Scholar]
  47. Pallant, A., & Lee, H.-S. (2015). Constructing scientific arguments using evidence from dynamic computational climate models. Journal of Science Education and Technology, 24(2), 378–395. http://doi.org/10.1007/s10956-014-9499-3 [Google Scholar]
  48. Parrill, A. L., Nakhleh, M. B., & Donovan, W. J. (2000). Evaluation of interactive technologies for chemistry Websites: Educational Materials for Organic Chemistry Web site (EMOC). Journal of Computers in Mathematics and Science Teaching, 19(4), 355-378. https://www.learntechlib.org/primary/p/9538/. [Google Scholar]
  49. Petritis, S. J., Kelley, C., & Talanquer, V. (2021). Exploring the impact of the framing of a laboratory experiment on the nature of student argumentation. Chemistry Education Research and Practice, 22(1), 105-121.  http://doi.org/10.1039/x0xx00000x [Google Scholar]
  50. Prain, V., & Waldrip B. (2006). An Exploratory Study of Teachers’ and Students’ Use of Multi-modal Representations of Concepts in Primary Science. International journal of Science Education, 28(15), 1843-1866.https://doi.org/10.1080/09500690600718294 [Google Scholar] [Crossref] 
  51. Sampson, V., & Blanchard, M. R. (2012). Science teachers and scientific argumentation: Trends in views and practice. Journal of Research in Science Teaching, 49(9), 1122–1148. http://doi.org/10.1002/tea.21037 [Google Scholar]
  52. Sampson, V., Grooms, J., & Walker, J. P., (2010), Argument-Driven Inquiry as a way to help students learn how to participate in scientific argumentation and craft written arguments: An exploratory study, Science Education, 95, 217-257.  https://doi.org/10.1002/sce.20421 [Google Scholar] [Crossref] 
  53. Sandoval, W. A., & Millwood, K. A. (2005). The quality of students’  use  of  evidence  in  written  scientific explanations the quality of students’  use  of  evidence  in  written  scientific explanations. Cognition and Instruction, 23(1), 23–55. http://doi.org/10.12 07/s1532690xci2301_2 [Google Scholar]
  54. Seggie, F. N. & Bayyurt, Y. (2015). Nitel Araştırma: Yöntem, Teknik ve Yaklaşımları. Ankara: Anı Yayıncılık. [Google Scholar]
  55. Sheskin, D. (2004). Handbook of parametric and nonparametric statistical procedures (3rd ed.). Boca Raton, FL: Chapman & Hall/CRC.  [Google Scholar]
  56. Simon, S., Erduran, S., & Osborne, J. (2006). Learning to Teach Argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2–3), 235–260. http://doi.org/10.1080/09500690500336957 [Google Scholar]
  57. Slavin R. E. (2008). What Works? Issues in synthesizing educational program evaluations. Educational Researcher, 37(1), 5-14. https://www.jstor.org/stable/30133882 [Google Scholar]
  58. Toulmin, S. (1958), The Uses of Argument. Cambridge, UK: Cambridge University Press. [Google Scholar]
  59. Waldrip, B., Prain, V., & Carolan, J. (2006). Learning junior secondary science through multi-modal representation, Electroniclournal of Science Education, 11(1), 66-105. [Google Scholar]
  60. Walker, J. P., Sampson, V., Grooms, J., Anderson, B., & Zimmerman, C. O., (2012), Argument-Driven Inquiry in undergraduate chemistry labs: the impact on students’ conceptual understanding, argument skills, and attitudes toward science, J. Coll. Sci. Teach., 41(4), 74-81. [Google Scholar]
  61. Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and  argumentation  skills  through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62. http://doi.org/10.1002/tea.10008. [Google Scholar]