- Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2–3), 131–152. http://doi.org/10.1016/S0360-1315(99)00029-9 [Google Scholar]
- Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183-198. https://doi.org/10.1016/j.learninstruc.2006.03.001 [Google Scholar] [Crossref]
- Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching, 46(1), 27-49. https://doi.org/10.1002/tea.20265 [Google Scholar] [Crossref]
- Aydeniz, M., & Dogan, A. (2016). Exploring the impact of argumentation on pre-service science teachers’ conceptual understanding of chemical equilibrium. Chemistry Education Research and Practice, 17, 111–119. http://doi.org/10.1039/C5RP00170F [Google Scholar]
- Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797–817. http://doi.org/10.1080/095006900412284 [Google Scholar]
- Burke, K. A., Greenbowe T. J., & Hand, B. M. (2006). Implementing the science writing heuristic in the chemistry laboratory. Journal of Chemical Education, 83(7), 1032-1038. https://doi.org/10.1021/ed083p1032 [Google Scholar] [Crossref]
- Choi, A., Hand, B., & Greenbowe, T. (2013). Students’ written arguments in general chemistry laboratory investigations. Research in Science Education, 43(5), 1763-1783. https://doi.org/10.1007/s11165-012-9330-1 [Google Scholar] [Crossref]
- Choi, A., Hand, B., & Norton-Meier, L. (2014). Grade 5 students’ online argumentation about their in-class inquiry investigations. Research in Science Education, 44(2), 267-287. https://doi.org/10.1007/s11165-013-9384-8 [Google Scholar] [Crossref]
- Creswell, J. W. & Plano Clark, V. L. (2011) Designing and conducting mixed methods research, Thousand Oaks, California, Sage Publicaitons. [Google Scholar]
- Creswell, J. W., & Plano Clark, V. L. (2018). Karma yöntem araştırmaları: Tasarımı ve yürütülmesi [Mixed method research: Design and execution]. (Y. Dede, S. B. Demir, Dü, & A. Delice, Çev.) Ankara, Türkiye: Anı Yayıncılık.. [Google Scholar]
- DiSessa, A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293–331. http://doi.org/10.1207/s1532690xci2203_2 [Google Scholar]
- Dolan, E., & Grady, J. (2010). Recognizing students’ scientific reasoning: a tool for categorizing complexity of reasoning during teaching by inquiry. Journal of Science Teacher Education, 21, 31–55. https://doi.org/10.1007/s10972-009-9154-7 [Google Scholar] [Crossref]
- Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287-312. [Google Scholar]
- Evagorou, M., & Osborne, J. (2013). Exploring young students’ collaborative argumentation within a socioscientific issue. Journal of Research in Science Teaching, 50(2), 209–237. http://doi.org/10.1002/tea.21076 [Google Scholar]
- Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: developments in the application of Toulmin’s argument pattern for studying science discourse. Science Education, 88(6), 915–933. https://doi.org/10.1002/sce.20012 [Google Scholar] [Crossref]
- Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: An illustrative example from students sharing knowledge about refraction. European Journal of Physics, 33(3), 657- 666. https://doi.org/10.1088/0143-0807/33/3/657 [Google Scholar] [Crossref]
- Ford, M. (2007). Disciplinary authority and accountability in scientific practice and learning. Science Education, 92, 404-423. https://doi.org/10.1002/sce.20263 [Google Scholar] [Crossref]
- Gilbert, J. (2005). Visualization: A metacognitive skill in science and science education. In J. Gilbert (Ed.), Visualization in science education. Dordrecht: Springer. [Google Scholar]
- Gunel, M., Hand B., & Gunduz, S. (2006). Comparing student understanding of quantum physics when embedding multimodal representations into two different writing formats: Presentations format versus summary report format. Science Education, 90, 1092–1112. https://doi.org/10.1002/sce.20160 [Google Scholar] [Crossref]
- Gunel, M., & Yesildag-Hasancebi, F. (2016). Modal representations and their role in the learning process: A theoretical and pragmatic analysis. Educational Sciences: Theory & Practice, 16(1), 109-126. https://doi.org/10.12738/estp.2016.1.0054 [Google Scholar] [Crossref]
- Hand, B. (Ed.). (2008). Science inquiry, argument and language. Rotterdam: Sense. [Google Scholar]
- Hand, B., Alvermann, D. E., Gee, J., Guzzetti, B. J., Norris, S. P., Phillips, L. M., Prain, V., & Yore, L. D. (2003). Message from the ‘‘Island Group’’: What is literacy in science literacy? Journal of Research in Science Teaching, 40(7), 607–615. [Google Scholar]
- Hand, B. & Choi, A., (2010), Examining the Impact of Student Use of Multiple Model Representations in Constructing Arguments in Organic Chemistry Laboratory Classes, Res. Sci. Educ., 40, 29-44. https://doi.org/10.1007/s11165-009-9155-8 [Google Scholar] [Crossref]
- Hand, B., Wallace, C., & Yang, E. (2004). Using the science writing heuristic to enhance learning outcomes from laboratory activities in seventh grade science: Quantitative and qualitative aspects. International Journal of Science Education, 26, 131-149. [Google Scholar]
- Hasançebi, F. (2014). The impacts of argument-based inquiry (ABI) approach on students' science achievements, argument skill and personal development. (Unpublished doctoral thesis), Ataturk University, Erzurum. [Google Scholar]
- Jiménez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). “Doing the lesson” or “ doing science”: Argument in high school genetics. Science Education, 84(6), 757–792. https://onlinelibrary.wiley.com/journal/1098237x [Google Scholar]
- Kaya, E. (2013). Argumentation practices in classroom: Pre-service teachers’ conceptual understanding of chemical equilibrium. International Journal of Science Education, 35(7), 1139–1158. http://doi.org/10.1080/09500693.2013.770935 [Google Scholar]
- Kaya, O. N, & Kılıç, Z. (2008). Etkin bir fen eğitimi için tartışmacı söylev [Argumentative Discourse for the Effective Teaching of Science]. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 9(3), 89-100. https://dergipark.org.tr/en/pub/kefad/issue/59524/855999 [Google Scholar]
- Kelly, G. J., & Bazerman, C. (2003). How students argue scientific claims: a rhetorical–semantic analysis. Applied Linguistics, 24(1), 28–55. https://doi.org/10.1093/applin/24.1.28 [Google Scholar] [Crossref]
- Kelly, G. J., Drucker, S., & Chen, K. (1998). Students’ reasoning about electricity: combining performance assessment with argumentation analysis. International Journal of Science Education, 20, 849–871. https://doi.org/10.1080/0950069980200707 [Google Scholar] [Crossref]
- Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanogra- phy students’ use of evidence in writing. Science Education, 86(3), 314–342. https://doi.org/10.1002/sce. 10024 [Google Scholar] [Crossref]
- Keys, C. W., Hand, B., Prain, V., & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory ınvestigations in secondary science. Journal of research in science Teaching. 36(10), 1065-1084. https://doi.org/10.1002/(SICI)1098-2736(199912)36:10<1065::AID-TEA2>3.0.CO;2-I [Google Scholar] [Crossref]
- Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205–226. http://doi.org/10.1016/S0959-4752(02)00021-X [Google Scholar]
- Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The role of representations and tools in the chemistry laboratory and their implications for chemistry learning. Journal of the learning sciences, 9(2), 105–143. https://doi.org/10.1207/s15327809jls0902_1 [Google Scholar] [Crossref]
- Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational compe- tence. In J. Gilbert (Ed.), Visualization in science education (pp. 121–146). Dordrecht: Springer. [Google Scholar]
- Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. R. Martin & R. Veel (Eds.), Reading science (pp. 87–112). London: Routledge. [Google Scholar]
- Mendonça, P. C. C., & Justi, R. (2013). The relationships between modelling and argumentation from the perspective of the model of modelling diagram. International Journal of Science Education, 35(14), 2407–2434. http://doi.org/10.1080/09500693.2013.811615 [Google Scholar]
- Munfaridah, N., Avraamidou, L., & Goedhart, M. (2021). The use of multiple representations in undergraduate physics education: what do we know and where do we go from here?. Eurasia Journal of Mathematics, Science and Technology Education, 17(1), em1934. https://doi.org/10.29333/ejmste/9577 [Google Scholar] [Crossref]
- Murcia, K. (2010). Multi-modal representations in primary science: What’s offered by interactive whiteboard technology. Teaching Science, 56 (1), 23-29. [Google Scholar]
- Nakhleh, M. B., & Postek, B. (2008). Learning chemistry using multiple external representations. In J. K. [Google Scholar]
- Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 209–231). Dordrecht: Springer. [Google Scholar]
- Namdar, B. (2015). An examination of preservice science teachers’ representational modality preferences during computer-supported knowledge organization. Journal of Theory and Practice in Education, 11(3), 949–970. https://dergipark.org.tr/en/pub/eku/issue/5466/74192 [Google Scholar]
- Namdar, B. (2017). A case study of preservice science teachers with different argumentation understandings: Their views and practices of using representations in argumentation. International Journal of Progressive Education, 13, 95–111. Retrieved 23 March 2019 from https://eric.ed.gov/?id=EJ1159876. [Google Scholar]
- Namdar, B., & Shen, J. (2016). Intersection of argumentation and the use of multiple representations in the context of socioscientific issues. International Journal of Science Education, 38(7), 1100–1132. http://doi.org/10.1080/09500693.2016.1183265 [Google Scholar]
- Opfermann, M., Schmeck, A., & Fischer, H. E. (2017). Multiple Representations in Physics and Science Education - Why Should We Use Them? In D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple Representations in Physics Education (pp. 1-22). Springer, Cham. https://doi.org/10.1007/978-3- 319-58914-5_1 [Google Scholar] [Crossref]
- Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463–466. http://doi.org/10.1126/science.1183944 [Google Scholar]
- Pallant, A., & Lee, H.-S. (2015). Constructing scientific arguments using evidence from dynamic computational climate models. Journal of Science Education and Technology, 24(2), 378–395. http://doi.org/10.1007/s10956-014-9499-3 [Google Scholar]
- Parrill, A. L., Nakhleh, M. B., & Donovan, W. J. (2000). Evaluation of interactive technologies for chemistry Websites: Educational Materials for Organic Chemistry Web site (EMOC). Journal of Computers in Mathematics and Science Teaching, 19(4), 355-378. https://www.learntechlib.org/primary/p/9538/. [Google Scholar]
- Petritis, S. J., Kelley, C., & Talanquer, V. (2021). Exploring the impact of the framing of a laboratory experiment on the nature of student argumentation. Chemistry Education Research and Practice, 22(1), 105-121. http://doi.org/10.1039/x0xx00000x [Google Scholar]
- Prain, V., & Waldrip B. (2006). An Exploratory Study of Teachers’ and Students’ Use of Multi-modal Representations of Concepts in Primary Science. International journal of Science Education, 28(15), 1843-1866.https://doi.org/10.1080/09500690600718294 [Google Scholar] [Crossref]
- Sampson, V., & Blanchard, M. R. (2012). Science teachers and scientific argumentation: Trends in views and practice. Journal of Research in Science Teaching, 49(9), 1122–1148. http://doi.org/10.1002/tea.21037 [Google Scholar]
- Sampson, V., Grooms, J., & Walker, J. P., (2010), Argument-Driven Inquiry as a way to help students learn how to participate in scientific argumentation and craft written arguments: An exploratory study, Science Education, 95, 217-257. https://doi.org/10.1002/sce.20421 [Google Scholar] [Crossref]
- Sandoval, W. A., & Millwood, K. A. (2005). The quality of students’ use of evidence in written scientific explanations the quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23–55. http://doi.org/10.12 07/s1532690xci2301_2 [Google Scholar]
- Seggie, F. N. & Bayyurt, Y. (2015). Nitel Araştırma: Yöntem, Teknik ve Yaklaşımları. Ankara: Anı Yayıncılık. [Google Scholar]
- Sheskin, D. (2004). Handbook of parametric and nonparametric statistical procedures (3rd ed.). Boca Raton, FL: Chapman & Hall/CRC. [Google Scholar]
- Simon, S., Erduran, S., & Osborne, J. (2006). Learning to Teach Argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2–3), 235–260. http://doi.org/10.1080/09500690500336957 [Google Scholar]
- Slavin R. E. (2008). What Works? Issues in synthesizing educational program evaluations. Educational Researcher, 37(1), 5-14. https://www.jstor.org/stable/30133882 [Google Scholar]
- Toulmin, S. (1958), The Uses of Argument. Cambridge, UK: Cambridge University Press. [Google Scholar]
- Waldrip, B., Prain, V., & Carolan, J. (2006). Learning junior secondary science through multi-modal representation, Electroniclournal of Science Education, 11(1), 66-105. [Google Scholar]
- Walker, J. P., Sampson, V., Grooms, J., Anderson, B., & Zimmerman, C. O., (2012), Argument-Driven Inquiry in undergraduate chemistry labs: the impact on students’ conceptual understanding, argument skills, and attitudes toward science, J. Coll. Sci. Teach., 41(4), 74-81. [Google Scholar]
- Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62. http://doi.org/10.1002/tea.10008. [Google Scholar]
|